It is clearly possible to fabricate PCBs from the fabrication data sets currently being used—it's being done innumerable times every day all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the format, which for over 90% of the world’s PCB production is Gerber: There are very rarely problems with Gerber files themselves. They allow images to be transferred without a hitch. In fact, the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and—more often—in how it is not used.

In this monthly column, Karel Tavernier explains in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data. Each month we will look at a different aspect of the design-to-fabrication data transfer process.

This column has been excerpted from the guide, *PCB Fabrication Data: Design-to-Fabrication Data Transfer.*

Chapter 1: How PCB Design Data is used by the Fabricator

In this first article of the series, we’ll be looking at what happens to the designer's data once it reaches the fabricator. This is not just a nice add-on, because for designers to construct truly valid PCB data sets, they must have a clear understanding of how their data is used. This, more than anything else, clarifies how it should be prepared.

We will not look at how to design PCBs for easy fabrication, which is completely outside the remit of the developer of the Gerber format and a matter for the PCB fabricators themselves.
What does a PCB fabricator do with CAD fabrication data?

PCBs are typically fabricated in about 22 steps, many of which are digitally controlled and require dedicated data modules called production tools.

Some designers believe that their PCB fabrication data will drive the fabricator’s production machines directly; that the Gerber files will be used directly on the PCB fabricator’s photoplotter; that Excellon drill files will go straight onto the fabricator’s drilling machines; and that IPC-D-356A netlist will go right into electrical test machines.

Not so. Fabricators never use the Gerber or Excellon files directly on their equipment.

There are many reasons for this, the simplest of which is panelization. Even though the designer’s data describes a single PCB or maybe an array, the job is never manufactured as such. It is always put on a production panel, which will typically have multiple jobs on it, as well as a border for plating, test coupons, etc. This is illustrated in Figures 1–3.

It follows that the fabricator can do nothing with production tools for a single job: he needs films and drill files for panel production. Another reason is that deviations are inevitably introduced by the fabrication processes, such as layer distortion during lamination and line width reduction during etching. These must be compensated for prior to manufacture. A third reason is that the production tools driving the fabricator’s equipment must fit the fabricator’s specific requirements so must often be converted to a proprietary format associated with the machine.

For all these reasons, the production tools that will drive the fabricator’s equipment are generated by the fabricator’s CAM department. PCBs cannot be professionally fabricated without this step: no CAM, no fabrication. It’s as simple as that.
The PCB CAM system typically performs the following steps (Figure 4):

- Input digital data (Gerber, Excellon, etc.)
- Reconstruct a physical model of the PCB. This may require the manual addition of information that has been “lost in translation.”
- Check for errors and if necessary communicate with the designer.
- Send product information to ERP to support quoting.
- Send product information to the engineering department who will decide how and on which equipment the PCB will be made, produce the travelers etc.
- Optionally tweak the design for DfM and if necessary communicate with the designer. At this stage CAM has a model of the single PCB as it will be delivered.
- Create the customer panel (a.k.a. array or shipment panel).
• Create the production panel (a.k.a. working panel).
• Compensate for deviations in the manufacturing processes (e.g., scaling to compensate for distortions during lamination). At this stage CAM has a model of the production panel as it will be manufactured.
• Send fabrication data to ERP.
• Output dedicated digital production tools to drive the NC fabrication equipment (photoplotting, direct imaging, legend printing, drilling, routing, scoring, AOI, electrical test files, AVI). The content of these production tools is very specific to the fabricator’s and customer’s setups, as the information needed and format used are often proprietary and specific to the equipment brand and model, while the equipment must “know” customer-specific details such as the location of the fiducials for registration on the direct imager and “don’t care” zones for the AOI system.

To generate the production tools, the CAM operator needs a perfect physical model of the bare PCB.

The incoming Gerber, Excellon and other data is always read into the fabricator’s CAM system which analyses, reworks and transforms the image and drill information into production tools. This is a very different proposition from using the designer’s datasets directly as production tools in two aspects:

• The data files are not treated as standalone items, but must be viewed as an interconnected dataset that, together, describes a PCB.
• PCB CAM needs to “know” more about a PCB than just the image. CAM needs to know, for example, which pads are edge connectors, because these need to be gold plated; CAM needs to know which drill holes are vias, because the solder mask is treated differently for via pads than for component pads, and so on.

These two points affect the way in which the designer’s PCB fabrication data should be structured. The designer need not worry whether his or her files will be able to drive NC production machines; it is the job of the fabricator’s CAM to manipulate the design data so that it will run on real production equipment. The designer’s focus should be on specifying the end product accurately, completely and unequivocally.

Remember: CAD output is CAM input and not machine input. When creating fabrication data from CAD, do not ask, “What can I do to create better production tools?” Instead, ask, “What can I do to create better CAM input?”

Part 2 of this series will be published next month. PCBDESIGN

Karel Tavernier is managing director of Ucamco. Karel has 30 years’ experience in software and imaging equipment for the PCB and electronic printed packaging industry, including sales, service and R&D at Barco, Belgium.
It is clearly possible to fabricate PCBs from the fabrication data sets currently being used; it’s being done innumerable times every day all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world’s PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

In this monthly series, Karel Tavernier explains in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data. Each month we’ll look at a different aspect of the design to fabrication data transfer process.

This article has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer.

Chapter 2: Alignment (Registration)

Never mirror or flip layers! All layers must be viewed from the top of the PCB, which means that the text must be readable on the top layer and mirrored on the bottom layer. Alas, sometimes, in a mistaken attempt to be helpful, designers flip layers because they must anyway be mirrored on the photoplotter. This could be helpful in a world where the designer’s files are used directly in fabrication, but these data layers are actually input for the CAM system. This needs the correct 2.5D PC structure, so designers need to follow the standard protocol for providing digital data. The fabricator’s CAM system
will do the rest: it will optimise and panelise the PCB and on output of the final, panelised data, it will mirror, rotate, shift and scale as required by production. Any designer that mirrors layers can only hope that the CAM engineer notices this and ‘unmirrors’ them.

Sometimes the drill/rout files use completely different coordinates from those used by the copper layers, typically because the copper layers are output in Gerber and the drill files in Excellon. (We will look at this in more detail in Chapter 4.) This results in misalignment, which the CAM engineer must then correct. This is generally relatively easy as the pattern of drill holes and pads is quite characteristic, but it’s less easy with very symmetrical jobs. Easy or not, the goal is to take the guesswork out of data transfer, and deliver aligned drill files. The simplest remedy is to output drill and rout files in Gerber so that the same coordinates are used for both file types.

In fact, all physical layers should be aligned, so those same coordinates should be applied to the solder mask, legend, board outline, and peelable layer, and for the sake of clarity, even though it’s not mandatory (as they are not a physical part of the PCB) to any accompanying drawings.

Sometimes, registration is resolved by adding alignment targets to the images. Don’t do this. CAM engineers must manually move the layers around until the targets align, and then manually remove the superfluous alignment marks, both of which take time on the CAM system and are a far cry from automatic, standardized data transfer. Eliminate complications by using the same coordinates, and register your data files.

Your favorite Gerber viewer will no doubt allow you to verify that they are aligned. Remember: Output all layers in the same coordinate system.

Next month we’ll look into Chapter 3. See you then.}

Karel Tavernier is managing director of Ucamco.
It is possible to fabricate PCBs from the fabrication data sets currently being used; it’s being done innumerable times every day all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world’s PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact, the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

In this monthly series, I will explain in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data. Each month we’ll look at a different aspect of the design to fabrication data transfer process. This month we’ll look at the PCB profile, or outline.

Chapter 3: The PCB Profile (or Outline)

The profile defines the extent of the PCB. It separates the PCB from what is not the PCB and is an essential part of PCB fabrication data. Without the profile, the PCB simply cannot be fabricated. The profile must be properly and precisely defined.

The profile defines a simple region in the 2D plane. The proper way to do this is to specify a closed contour: The inside of the contour is the PCB, and the outside is not. It is that simple.

Note that such a simple region is solid, without holes. By definition then, a profile cannot have holes intentionally placed within it. These are superfluous and represent an unnecessary and complicated duplication given that drill holes are well defined in the drill/rout file. One can view cut-outs in a PCB as still part of the PCB, just as much as the drill holes are.

A contour is defined by the Gerber spec as follows:

“A contour is a sequence of connected draw or arc segments. A pair of segments is said to connect only if they are defined consecutively, with the second segment starting where the first
one ends. Thus the order in which the segments of a contour are defined is significant. Non-consecutive segments that meet or intersect fortuitously are not considered to connect. A contour is closed: The end point of the last segment must connect to the start point of the first segment."

The Gerber format regions are defined by contours using the G36/G37 commands. This is precise and unequivocal, and is the recommended way to specify the profile. The filled contour covers the PCB exactly.

If this is not possible, the profile can be specified by drawing the contour with a zero size or very small size aperture. If the aperture is not zero size, the profile is the center line of the stroked line; in other words, do not compensate for aperture size. You are transferring an image, not a production tool for a drill machine. The profile layer is not copper. It is more akin to a drill or rout file as it affects all layers. The outline should therefore be put into a separate file, and not shoved into a copper layer.

It is helpful to provide a mechanical drawing with the profile. However, this is not a substitute for digital data.

Corner marks are sometimes used to indicate the profile. Again, corner marks are meant for visual interpretation and do not constitute digital data. Therefore, they are not a valid specification of the profile.

What is definitely unacceptable is to take a copper layer and add a crude manually-drawn line that, to make matters worse, is drawn with the same aperture as the copper tracks.

Next month we’ll move on to Chapter 4. See you then. PCBDESIGN

This column has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer.

Karel Tavernier is managing director of Ucamco.
by Karel Tavernier
UCAMCO

It is possible to fabricate PCBs from the fabrication data sets currently being used; it’s being done innumerable times every day all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world’s PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact, the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

Each month we look at a different aspect of the design to fabrication data transfer process. In this monthly column, Karel Tavernier explains in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data.

Chapter 4: Output drill files in Gerber rather than in an NC format

Incoming drill files in particular are never used directly on the fabricator’s drilling machines. There are plenty of reasons for this, and we’ve already seen some of these in earlier chapters. But the specific issue with drill files is that incoming CAD files specify the end-diameter of the hole on the finished bare board, while in reality a bigger hole must be drilled to make room for plating. Furthermore, the PCB designer is unlikely to know the origin and orientation of the fabricator’s drilling machine, its working parameters and all the rest, which will also affect the way in which the production panels are drilled and routed.

Therefore, the CAD designer need not fret about whether the drill machine works in metric or imperial, or can handle the resolution, feeds and speeds: the fabricator’s CAM system takes care of all that. The designer needs only to concern himself with how to transfer the design data to CAM, optimally, accurately, completely and safely with a minimum of manual work for all parties.

It may come as a surprise, but the best file format for CAD to CAM drill information transfer is a Gerber file, not an NC or Excellon file. The most important reason for this is attributes,
which are essential for automated CAD to CAM data transfer. Attributes specify the span and plating of a file, the function of a drill hole—that it is, say, a via hole—and the drill tolerances. Gerber is the only format that supports attributes. NC formats do not.

In addition, CAM departments often face the following problems with NC files:

- **Drill files and copper layers are not registered as they use a different datum point**

 This occurs in nearly 50% of all job data sets. Where this happens, the CAM engineer has to work the data, shifting and rotating each drill file to register it with the copper layers. This is a medieval way of working. The only secure solution is for the CAD professional to generate the drill and copper layers in perfect register, preferably using the coordinates of the CAD system on all layers, to facilitate communication between designer and fabricator. The underlying reason for misregistration is that copper layers are output in Gerber and the drill data in an NC format. The NC output in CAD can possibly be set up to register with the Gerber data, but the simplest way to guarantee registration is to output both in Gerber.

- **Drill holes are not centered on the copper pads**

 When this occurs, part of the drill tolerance is gone before drilling even starts, increasing the risk of breakout. The root cause is different rounding and resolution in the Gerber and NC drill files. To overcome this issue, the CAM engineer may “snap” the copper pads to the drill holes. This manual operation takes time and carries risk, forcing the CAM engineer to manipulate the design, which is something the designer does not want. The simplest solution is to output the drill files in Gerber at the same resolution as the copper layers. Then everything matches perfectly.

- **Incomplete NC file**

 All too often—in a whopping 75% of PCB data sets, in fact—the NC files are incomplete and require manual input of scale, unit and tool diameters. Such incomplete files relate to a complete NC file as the (obsolete) Standard Gerber relates to a proper Extended Gerber file. If you use Extended Gerber for image layers, it is not terribly consistent to stick to incomplete drill files. (See Chapter 21.) You must use complete drill files; the question is how to do this. Although it may be possible to set up the NC output of your CAM system to generate complete NC files, but the simplest solution is to output in Extended Gerber, which is guaranteed to be complete.

- **Limited resolution of Excellon file**

 The Excellon format suffers from severe limitations on resolutions, so while it is quite adequate for drilling, it is not recommended for design transfer. There is no such limitation in Gerber.
• Poor implementation of NC output in some CAD systems

Some NC files are really terrible. They can, for example, have binary junk in the middle of the file, or non-standard commands. As images are considered to be more critical than drill files, the quality of Gerber files is typically much better.

• Needlessly using two formats where one will do

Copper layers must be in Gerber as NC files cannot describe a copper image, so Gerber is a given. As Gerber can also describe the simpler drill data, it makes sense to keep things simple by using this format for both copper and drill/rout data. By using an NC format for drill, a second format is needlessly introduced, and the risk of problems is doubled.

There is not a single disadvantage in using Gerber rather than an NC format to express CAD-to-CAM drill data. On the contrary, it brings many advantages in terms of completeness, accuracy, consistency and simplicity.

There is not a single disadvantage in using Gerber rather than an NC format to express CAD-to-CAM drill data. On the contrary, it brings many advantages in terms of completeness, accuracy, consistency and simplicity.

One may object that we cannot send Gerber files to a drilling machine. True enough, but as outlined above, this is a non-issue. The CAM system will generate the drill files for fabrication in Excellon, Hitachi, Sieb & Meyer, or whatever format best suits the drilling machine, and will take care of the offset, rotation, feeds, speeds, tool diameter, resolution, optimisation, size compensation and whatever else is needed for optimal performance on the fabricator’s equipment. This means that Gerber is hands-down the best format for input in CAM.

One may object that Gerber is an image description format—true again—and that drill data is not image data. This is actually not true. A Gerber copper file describes where there is copper and where there is no copper. Just as a legend file describes where there is legend ink and where there is no legend ink. These files use images to show the presence and absence of material. So do drill and rout files. In this case they describe where material must be removed: a hole or slot is the absence of material. So a drill file, just like a copper layer, is an image file. Yes, drill holes and copper patterns are produced by different processes, but at design stage, they are images.

Copper layers and legends are also produced by different processes for that matter, but no one claims they must be described by different image formats. The only difference between drill and copper layers is that the drill file applies to a range of layers, the span, and not to a single layer, and of course, the span must be clearly specified, in both Gerber and NC formats. Here too, Gerber is better: NC formats have no inherent mechanism for describing spans, while Gerber’s attributes allow span to be specified in a standard, machine-readable manner.

Conclusion: Gerber is far superior to the NC formats for transferring drill and rout data from design to fabrication. Output your drill and rout files in Gerber.

Next month we’ll move on to Chapter 5. See you then. PCBDESIGN

This column has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer.

Karel Tavernier is managing director of Ucamco.
It is possible to fabricate PCBs from the fabrication data sets currently being used; it's being done innumerable times every day all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world’s PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact, the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

Each month we look at a different aspect of the design to fabrication data transfer process. In this monthly column, Karel Tavernier explains in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data.

Chapter 5: The Layer Structure

When a PCB fabricator receives a data set, the first thing he does is load it into his CAM system to recreate a model of the PCB. This is the model that will drive manufacturing. To create this model, all image files must be converted and the function of each file in the stack must be clearly defined so it is clear which is the top copper layer, which is the solder mask, etc. The layer structure—the position of each layer—must be defined. After all, a PCB is not a pile of unrelated images, but a strictly ordered set of layers that are laminated together.

The goal is to define this layer structure in an automatic process following a defined standard to eliminate manual work and subjective interpretation. This is precisely what the Gerber specification’s .FileFunction attribute does. To quote from the Gerber specification:

5.4.1.1 .FileFunction
The .FileFunction file attribute identifies the function of the file in the PCB. The attribute must be set in the file header.
Of all the attributes it is the most important.

When this attribute is present in the data set, the fabricator’s CAM software can use it to assign the file to its correct position in the layer structure, automatically and without any need for manual input. Job done, with no risk of operator error.

To transfer the layer structure according to the standard, you must choose Gerber “X2” output on your layout software, where X2 is shorthand for “Gerber with attributes.”
CAM operator can use to set the layer structure manually in his CAM system. Naturally, you’re hoping that neither of you make mistakes.

The best option is to express the file function in the file name. The Gerber .FileFunction attribute actually allows defining a file naming convention. The Gerber Standard File Naming (GSFN) convention reflects file function in the file name—it encodes the .FileFunction attribute in the file name. This is the closest you will get to a standard without X2 support.

The GFSN standard file name consists of three parts:

1. A free-to-choose prefix identifying the job. This prefix is common to all files for any one job.
2. A postfix identifying file function. The postfix starts with an underscore (‘_’) followed by the FileFunction value string where the comma (‘,’), which can create confusion in file names, is replaced by ‘$’.
3. The standard extension .gbr.

Example:
GJ01911Rev2.1_Legend$Top.gbr
GJ01911Rev2.1_Soldermask$Top.gbr
GJ01911Rev2.1_Copper$L1$Top.gbr
GJ01911Rev2.1_Copper$L2$Inr$Plane.gbr
...
GJ01911Rev2.1_Copper$L10$Inr$Plane.gbr
...

By following the GSFN you clearly identify file function. It is your best option if you cannot use Gerber X2.

Express the layer structure in a standardized way by using Gerber X2. If the standard is not available use clear file names.

So what should you do if your PCB layout software is not capable of outputting the current Gerber version with attributes? This is a problem, and indeed the temptation is to suggest that you consider switching to layout software that supports up-to-date Gerber output.

X2 is the Gerber standard to transfer the layer structure. If you cannot output X2, you will need to use an informal method to define the layer structure in a legible form that the

Figure 1: The layer structure.
It is possible to fabricate PCBs from the fabrication data sets currently being used; it’s being done innumerable times every day all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world’s PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact, the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

Each month we look at a different aspect of the design to fabrication data transfer process. In this monthly column, Karel Tavernier explains in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data.

Chapter 6: Drill File Structure

Drill files specify geometric information, indicating where material is to be removed and where plated copper is to be added. This geometric data must be specified in a standardized and machine-readable way.

Geometrically, drill holes are characterized by their diameter, their span (start and end layers) and whether they are plated or non-
plated. The diameter is easily specified by the aperture (tool) diameter in the Gerber drill file, or the NC drill file for that matter. Span and plating are transferred in Gerber with the ‘FileFunction’ attribute. To quote from the Gerber format specification (see Table 1).

As can be seen from this excerpt, the Gerber format provides unequivocal language to describe drill span and plating. It should be clear from this that any one file will describe one drill span and one plating instruction, so different spans and plating instructions must be put into separate files. A typical PCB fabrication data set will therefore contain several drill files: one for PTH holes, another for NPTH holes, and others for the different blind and buried spans. By creating data sets in this way, we can ensure that the whole drill file structure is standard and can be read automatically.

If you are not able to add attributes to the file in this way, the CAM operator must manually determine the file function on his CAM system. In this case, you will be providing the information informally, but it should still be as simple and unequivocal as possible. The best way to achieve this is to make the function clear in the file name (e.g., NPTH.GBR). A more indirect method is to list the files and their functions in a text file.

Sometimes both plated and non-plated holes are lumped together in a single file. Some argue that this is OK because the drill map indicates which holes are plated. The drill map does indeed indicate this (usually). But it is not OK.

Drill data must be standardized and machine-readable. Drill maps are neither standardized nor machine readable; they must be read offline by CAM operators, who must work out the drill coordinates visually and then indicate manually which holes are plated and which are not. This terrible practice is bad enough if the plated and non-plated holes are specified using different tool numbers. But where plated and non-plated holes have the same diameter and the file is “optimized” by using the same tool for both, it becomes really excruciating work for the CAM engineer, and risky for the successful outcome of CAM and production. This is why plated and non-plated holes should always be put in separate files. If this is not possible, at least use separate tools for them.

One more thing. In some cases, fabrication data comes in with just a drill map, and no digital drill data at all. This is simply unacceptable. Drill machines cannot read a drill map: drill machines have been using CNC data for decades. Without digital drill data, the CAM operator must pore over the drill map,
measuring and manually reconstructing the drill data from it, in a laborious and error-prone process. Don’t do this—have mercy on the poor CAM engineer!

Note that the considerations in this chapter apply whether the drill files in your fabrication data sets are in NC or Gerber format. (In Chapter 4 in this series, we argue that Gerber is by far the best choice). Whatever format you choose, the bare minimum is that you create a separate file for each span, and for plated and non-plated holes, and that you clearly indicate which is which.

These requirements for drill data also hold true for rout data. Even though drilling and routing are very different fabrication processes, the difference between them is largely irrelevant when they are viewed as fabrication image data: both simply indicate where material is removed. Indeed, the fabricator may very well nibble a slot in a rout file, or rout a large hole. In conclusion, the fabrication data must specify what the fabricator must fabricate. The fabricator will decide how to fabricate it.

And remember: Put plated and non-plated holes in separate files.

This column has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer.

Figure 1: A drill map. It may be useful, but it’s not a substitute for drill data.

Karel Tavernier is managing director of Ucamco. Karel has 30 years’ experience in software and imaging equipment for the PCB and electronic printed packaging industry, including sales, service and R&D.
by Karel Tavernier
UCAMCO

It is possible to fabricate PCBs from the fabrication data sets currently being used; it’s being done innumerable times every day all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world’s PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact, the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

Each month we look at a different aspect of the design to fabrication data transfer process. In this monthly column, Karel Tavernier explains in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data.

Chapter 7: Junk, or the Difference Between Data and Drawings

The core of a PCB fabrication data set is its digital data files. These data files will be read into CAM to recreate a model of the PCB and then used for further digital processing. There must be a digital data file, in Gerber, for each pattern in the PCB: copper layers, drill and route files, solder masks, legends, peelables and whatever other patterned layers are present.

That said, a PCB fabrication data set may contain technical drawings—indeed, a mechanical
drawing is often absolutely essential. A technical drawing is intended not for digital processing, but for humans to look at, and it is made according to time-hallowed rules as shown in Figure 1, and includes a frame, title block, notes and legends.

As drawings are images, they too are best transferred in Gerber (more in Chapter 10). Alas, sometimes digital data and drawings are confused and a drawing frame is added to digital data, resulting in a copper layer (Figure 2).

While the frame is essential in a drawing that is made for people, it becomes junk when added to a digital data file such as a copper layer that is to be digitally processed by CAM software—and this junk must be removed manually by the CAM operator before the data can be used. Digital data does not automatically become a drawing because it represents graphic information. And expressing both drawings and graphical digital data in Gerber does not automatically make them drawings—or purely digital files.

Use only pure data files, without junk or embellishments. You may object that the title block contains useful information. This may well be—if so, the solution is to put that information in a separate text file or a true drawing. The data is then pure and can be used without manual cleanup and the information intended for the human operator is conveniently available in a separate file.

Remember, put only data in data files.

Chapter 8: Always Include the Netlist

Basically, a netlist is a set of nets, where each net has a name and a set of nodes identified by their XY coordinates. Nodes on the same net must be electrically connected. Nodes on different nets must be isolated.
Including the netlist in the PCB fabrication data set increases the security of data transfer by an order of magnitude. The first thing a fabricator does after reading a fabrication data set into his CAM system is to generate a netlist—the reference netlist—from the image. During the CAM process the CAM engineer will regularly check the job data against the reference netlist to protect against operator or software errors. When a netlist is present in the incoming fabrication data set, he will also check his reference netlist against the supplied netlist. Any serious errors in the images or drill files will inevitably result in netlist differences and set off an alarm. The presence of the netlist in the fabrication data sets protects against mistakes in data transfer, whether these are due to software or operator error, in CAD output or CAM input. Adding the netlist to the fabrication data sets extends the regular netlist check performed by the CAM operator to encompass not only the CAM process, but the complete CAD-to-fabrication data transfer.

Now, errors in the transfer of image data from CAD to CAM are rare, but they do happen. And they are very costly when they happen. Without the netlist, the fabricator cannot know he is working from a wrong image. He will faithfully manufacture the wrong PCB, which will pass his electrical test as it is tested against the netlist created from the wrong data. The error will only become apparent after the PCB is loaded with components, at which point the costs are staggering. All deadlines are missed, recriminations fly, and the search for the guilty starts. Simply including a netlist largely protects against such a rare but dramatic event—it is like installing smoke detectors and sprinklers. Fires
do not occur often either but everyone takes steps to protect against them.

The netlist is a powerful check on the image data; it is akin to the checksums that are widely used to make data transfer reliable. Including the netlist is simple. It is sufficient to include an IPC-D-356A file in the data set. IPC-D-356A contains all the necessary information, and more. Virtually all manufacturers can read IPC-D-356A and most CAD systems can output it.

It is sometimes claimed that comparing netlist and image data throws up many false errors. This is largely a problem of the past when implementations were new and buggy. Nowadays most netlist files are OK.

There is another way to view this: the netlist is the basis of any PCB layout, and the essential function of a PCB is to physically implement that netlist. The PCB fabricator is expected to electrically test the fabricated boards and to guarantee that the shipped boards’ netlist is correct. It is therefore of paramount importance that the fabricator works from the correct netlist, so it is an obvious requirement that the netlist be supplied to the fabricator rather than leaving him to reverse engineer it from the images.

A professional PCB fabrication data set must include a netlist. Omitting it amounts to a self-inflicted competitive disadvantage.

Because the inclusion of a netlist is so simple and is such a powerful security check on the data, Ucamco’s position is that if a data transfer error occurs that would have been flagged by checking back to a netlist, the responsibility lies at least partially with the party that has neglected to include a netlist, or that has neglected to use a supplied netlist.

Remember, always include an IPC-D-350A netlist file in the PCB fabrication data set.

This column has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer.
by Karel Tavernier
UCAMCO

It is possible to fabricate PCBs from the fabrication data sets currently being used; it’s being done innumerable times every day all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world’s PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact, the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

Each month we look at a different aspect of the design to fabrication data transfer process. In this monthly column, Karel Tavernier explains in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data.

Chapter 9: Drawings are no Substitute for Data

Drawings may be a useful part of a PCB fabrication data set, but they are no substitute for digital data. There must be a digital data file for each pattern in the PCB: copper layers, drill-and-route files, solder masks, legends, peelables and whatever other patterned layers are present.

For example, adding a drill map may be useful but it is not a substitute for a proper drill file. Drilling is done with a CNC drill machine,
which needs CNC data that has been generated by CAM. If the fabricator only has a drill map, how do you expect him to generate the drill data? Visually, by measuring the drill map on an XY table and typing in the coordinates?

Another example is the excellent profile drawing in Figure 1. This drawing defines and illustrates the profile perfectly. The profile drawing may still be useful as a check, but it does not replace digital data specifying the profile, which can be read in automatically (see Chapter 3 in this series). Note that while the drawing does not specify the exact position of the profile with regard to the copper layout, profile digital data does.

Remember, drawings are no substitute for digital data.

Chapter 10: Use only the Gerber Format for your Image Data

Keep data formats to a minimum, using only those that are truly needed. Every extra format used adds output and input processing requirements and increases the risk of bugs and version problems. Mixing formats also increases the risk of misalignment between files (see Chapter 2 in this series).

Copper layers must be expressed in Gerber, so Gerber is a given. Consequently, what can reasonably be expressed in Gerber must be expressed in Gerber.

Drawings are images, so they can—and must—be transferred in Gerber. Other formats are often used for drawings: PDF, HPGL, DXF, DWG etc. These may be fine formats, and DPF is definitely a first-rate data exchange format, but for PCB fabrication data drawings, Gerber is the better choice: Your fabricator needs to read your drawings into his Gerber-capable CAM system to relate it to, and shed light on, the image data—which is, after all, the very reason why you sent the drawings at all. His CAM system is definitely proficient in handling Gerber data but it was not designed to handle other formats. So, although PDF may be a better choice for other workflows, Gerber is the format for drawings in the PCB workflow.

Avoid complicated formats such as DXF and DWG like the plague. You cannot expect your professional CAM operator, who is highly skilled in the Gerber format, to have access to, and be familiar with, the high-end professional software that would be necessary to handle such formats. Simpler software is often of mixed quality, and not safe or reliable enough to faithfully transfer your professional work.

Definitely do not use DXF or DWG for data files such as copper layers. These formats were neither designed for, nor suitable for, PCB data. Indeed, such files are loathed by CAM operators.

In fact, the number of formats needed is very limited. Copper, drill, rout, solder mask, legend must all be expressed in Gerber, and so must the drawings. The netlist cannot be expressed in Gerber, IPC-D-356A must be used. The informal data intended for human eyes—delivery

Figure 1: A profile drawing.
info, for example, can be expressed in plain text or PDF files. More formal data is expressed in structured text files such as CSV, XML or YAML. Consequently the only formats you need are:

- Gerber
- IPC-D-356A
- Text files
- PDF, possibly

Always output all your drawings in Gerber.

This column has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer. Karel Tavernier is the managing director of Ucamco.
It is possible to fabricate PCBs from the fabrication data sets currently being used; it's being done innumerable times every day, all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world's PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact, the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

Each month we look at a different aspect of the design to fabrication data transfer process. In this monthly column, Karel Tavernier explains in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data.

Chapter 11: Non-image Data

A PCB Fabrication set contains general PCB specifications such as thickness, finishes, ROHS compliance, etc., as well as commercial data: number ordered, addresses, delivery time.

There is currently no common standard governing this type of data. It is typically delivered as informal or formal data in plain text or in PDF files intended for human eyes.
PDF is a fine and widely supported format; however it is too complex for automatic data extraction. Remarkably enough, the best option for PCB fabrication data is a plain text format, as many fabricators have software that can automatically extract information from such files. Formal information is best expressed in structured text files: comma-separated values (CSV), XML, JSON or preferably YAML. YAML is well structured and human readable, and YAML files are the easiest and safest to automate.

Please do not use Excel, Word or PowerPoint formats. Firstly, by doing so you introduce yet more formats for your manufacturing partners to deal with. More importantly, they are not open formats: They are proprietary application formats whose specifications are rightfully closely-guarded secrets. They are not, therefore, data exchange formats, and their use adds unnecessary complications as automated data extraction is well-nigh impossible. They require dedicated interactive applications and cannot be built into automated workflows; what’s more, version problems abound (e.g., between open source and Microsoft software). If you must choose between such formats and PDF, choose PDF without hesitation, but plain text files are best.

Often, general PCB data is delivered in drawings. This is an excellent and time-honored practice in all fabrication industries, but here too, data cannot realistically be extracted from drawings. Again, as automation protects against operator error, it is advisable to put all your general data in text files, even if it is already in a drawing.

Always place all of your general data in human-readable text files, informally or structured as in CSV, XML and YAML. Do not use Excel, Word or PowerPoint formats for this purpose.

Chapter 12: Number of Digits Used for Coordinates

Use the same resolution and number of digits (resolution) for all data layers. If you use different resolutions for different layers, the position of the different elements will be rounded differently. The result is that, say, via pads and drill pads end up being out of alignment. You can only hope then that the CAM engineer notices this and “snaps” the via pads to the drill holes. This of course changes the copper image, which is something the CAM engineer is not supposed to do, but he is also supposed to deliver a perfectly aligned PCB. So he’s damned if he does, and he’s damned if he doesn’t.

Misalignment sometimes arises even when the same resolution is applied to all layers. This is usually because the output processors for Gerber and for Excellon round differently. As for other issues mentioned above, the simplest solution is to output the drill/rout layers in Gerber. (See Chapter 2 in this series.)

Ideally, Gerber files use six decimal places in inches and five or six decimal places in mm. If your software cannot produce these resolutions then get as close as you can. Some recommend the use of lower resolutions, probably to save a few bytes. Who cares about saving a few bytes? Don’t follow this recommendation: lower resolution increases rounding errors. This not only affects alignment, but, more importantly, it increases the risk of serious problems because these rounding errors can make contours self-intersect, which is invalid and result in invalid arcs.

Low resolution is the root cause of most of the few image errors in Gerber files; it does not happen often but it makes no sense to take this risk to save a few bytes. Another reason given to use low resolution is that the drilling machine may not be able to handle big files. This may well be true but it is irrelevant: as we have already seen, the CAM system will output drill files exactly as the driller needs them.

Remember: Use the maximum precision for co-ordinates, and output all layers with the same precision.

This column has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer.

Karel Tavernier is the managing director of Ucamco.
It is possible to fabricate PCBs from the fabrication data sets currently being used; it’s being done innumerable times every day, all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

Chapter 13: The File Extension

Wikipedia states, “A filename extension is a suffix (separated from the base filename by a dot or space) to the name of a computer file applied to indicate the encoding (file format) of its contents or usage. Examples of filename extensions are .png, .jpeg, .exe, .dmg and .txt.”

Microsoft states, “A file name extension is a set of characters added to the end of a file name that determine which program should open it.” The advantage of this rule is that the file format is clear without first opening the file, and, consequently, so is the preferred application for the file.

To quote from the Gerber format specification: The Gerber Format has a standard file name extension a registered mime type and a UTI definition.

Standard file extension: .gbr or .GBR.
Use the standard file extension .gbr or .GBR on all Gerber files.

All too often, names such as pn674847.top are used, meaning the top layer of job PN674846. This idea dates from the 1980s, the days of MS-DOS, the first Microsoft operating...
system. The file names in MS-DOS were restricted to a measly eight characters. Abusing the file extension to gain a few extra characters may have made sense in those days, but it makes no sense today.

File extensions such as .ger, .pho, etc. are also sometimes used. They do indeed express the format, but in a proprietary, non-standard way. Always use the standard extension .gbr or .GBR.

One may object that the supply chain is used to a file name convention such as in pn674847.top and it is not possible to simply throw it overboard. Fine: give this file its full name, in this case, pn674847.top.gbr. This is valid and the old file name is still prominent.

Remember: Always use the standard file extension “.gbr” for Gerber files.

Chapter 14: Negative Copper Layers

Negative layers are a relic of the 1960s and 1970s and the age of the vector photoplotter, which are now as obsolete as the mechanical typewriter. The vector photoplotter was similar to a pen plotter, but instead of using ink and paper, it wrote onto photosensitive film using a stationary light “pen.” The film was held firm on a flat table that moved in the X-Y plane under the pen’s light beam which was switched on and off as the image dictated. Every movement was governed by commands in input Gerber files.

This was fine for drawing tracks. The problem started with planes, or anything with large copper pours such as that shown in Figure 2.

This is because vector plotters created these large copper pours using a technique called “vector-fill,” “painting,” or “stroking.” This involved repeatedly moving the table back and forth under the pen, just as a child moves a crayon back and forth over an area until it is completely filled, as in Figure 3.

In principle, this worked. But in practice, the input Gerber file, containing the zillions of draws that were needed for the vector fill, was huge. More importantly, it took ages—easily an entire shift—to plot a plane, so it was highly impractical.

The solution was to plot in negative, in other words, creating the clearances rather than the copper pours, as shown in Figure 4.

This eliminated the need for painting, and the Gerber file size and plotting times were kept to a minimum. The negative film thus created was then used in the photolab as a phototool, to generate the positive film that was necessary for downstream production processes. Although this added a step and involved manual work, it was infinitely better than blocking the expensive photoplotter for a whole shift with impatient customers breathing down one’s neck and demanding their plots. Negative films made a lot of sense in the days of vector photoplotters.

But time has moved on since then, and so...
have printing devices. For decades, plotters and direct imagers have used raster-scan technology, whose speed depends solely on image area and resolution. Image content no longer dictates throughput so same-size planes and signal layers take exactly the same time to plot.

So, negative files no longer offer benefits. On the contrary, they introduce some serious disadvantages:

- While positive layers have clearly defined limits, negative layers do not, so arbitrary limits must be imposed.
- In a mixed data set, there is no standardized method by which to define which layers are negative, so manual reverse engineering is necessary. When all layers are positive there is no problem.

Most importantly, negative layers do not contain copper pour outlines, so these must be created. This can be done by maintaining specific clearances from the profile, for example, but this is still guesswork and reverse engineering. In positive layers, on the other hand, copper outline is clearly defined.

How to define a positive copper plane:

G04 We define the antipads
%TF.AperFunction,AntiPad*%
%AD11C....*%
....
G04 We now define the extent of the copper pour*
LPD*
G36*
X...Y...D02*
X...Y...D01*
....
G37*
G04 And now we flash clearances
%LPC*%
D11*
X...Y...D03*
....

This gives CAM clear and unequivocal information which is robust, numerically accurate, and the anti-pads will register with the drill files. And it’s as compact as a negative file, and clearly defines the extent of the copper. Perfect.

There is no longer any benefit in transferring the data in negative. On the contrary: It is a relic from the bad old days that adds confusion, manual work, and risk.

Always use positive copper layers.

This column has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer.

Karel Tavernier is the managing director of Ucamco.
by Karel Tavernier
UCAMCO

It is possible to fabricate PCBs from the fabrication data sets currently being used; it's being done innumerable times every day, all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world's PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact, the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

Each month we look at a different aspect of the design to fabrication data transfer process. In this monthly column, Karel Tavernier explains in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data.

Chapter 15: The Use of Gerber Viewers

Before sending your Gerber files off to your fabricator, you are often advised to check them using a reputable Gerber viewer such as GC-Prevue. This is excellent advice.

Note that this involves more than just verifying that the viewer displays your intended image: It is important that you check too that the file is valid. Even when handling invalid data, viewers typically try to reverse engineer the intended image by ‘reading between the lines’. This is perfectly OK, but the file is still invalid and, according to Gerber specification: An invalid Gerber file is meaningless and does not represent an image.

A file with errors must not be sent to the fabricator as if all is well, even if the intended image is shown. This is because even if your reader has reverse engineered the intended image from the invalid data, another reader may not be so successful. And that reader may be your fabricator's CAM, which will result in scrap. Should this happen, the fault lies squarely with
the file. To quote from the Gerber specification: The responsibilities are obvious and plain. Writers must write valid and robust files and readers must process such files correctly. Writers are not responsible for navigating around problems in the readers, nor are readers responsible for solving problems in the writers.

It is therefore extremely important that you check that your files are valid. Invalid files can cause viewers to throw error messages like the one in Figure 1, taken from GC-Prevue:

These messages clearly indicate that there is something very wrong with the file. The question is, what do you do if you see such errors? It’s not easy. Low resolution is often the root cause of problems, so it is worth trying to output the file at the resolution recommended in Chapter 10 in this series.

The only safe solution is to fix the bugs in the Gerber output software. It is therefore essential that you provide detailed information of the problem to your software supplier so that the bug can be fixed for the future. That said, the chances are that your board cannot wait for this fix and you have no way to output a valid file. This is then a conundrum. You could send the invalid data with the necessary caveats and hope that your fabricator’s software, like your reader, will reverse engineer the intended image correctly. If it does, all is well. But this is a risk, so if you decide to do this, always include a netlist as a safeguard, as advised in Chapter 8 in this series. You can also ask your fabricator to send you the images he generates in CAM, so that you can check them for errors.

Figure 1: Error messages in a viewer.
Check the error messages of your Gerber viewer and act on them.

Chapter 16: Standard Gerber

To quote from the Gerber format specification:

Standard Gerber is revoked and superseded by Extended Gerber, which is the current Gerber format. Consequently, Standard Gerber no longer complies with the Gerber specification. Files in that format can no longer be correctly called Gerber files. Standard Gerber files are not only deprecated, they are no longer valid.

Please use Extended Gerber for all of your operations. Standard Gerber is technically obsolete. If you are still using it, you are putting your business and that of your clients and business partners at a useless risk, without benefit.

Despite its name, Standard Gerber is not a defined standard for PCB data transfer: Units and aperture definitions, rather than being governed by a recognizable standard, are in an informal document, the interpretation of which is unavoidably subjective. As a result, Standard Gerber files cannot be machine-read in a standardized, reliable way.

Standard Gerber requires aperture painting and copper pours, both of which create manual work in CAM, adding cost, delay and risk to the PCB manufacturing process.

Standard Gerber does not support attributes. Extended Gerber files are machine readable, they do not require painting, and they do support attributes. Virtually all software reads Extended Gerber and many new implementations no longer support Standard Gerber. There is not a single good reason left to use Standard Gerber. The use of Standard rather than Extended Gerber is a self-inflicted competitive disadvantage.

To quote from the specification once more:

Warning: The responsibility of errors or misunderstandings about the wheel file when processing a Standard Gerber file rests solely with the party that decided to use revoked Standard Gerber, with its informal and non-standardized wheel file, rather than Extended Gerber, which is unequivocally and formally standardized.

More information can be found in the Open Letter on Standard Gerber, which is on the download page at www.ucamco.com.

This column has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer.

Karel Tavernier is the managing director of Ucamco.
It is possible to fabricate PCBs from the fabrication data sets currently being used; it’s being done innumerable times every day, all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world’s PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact, the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

Each month, we look at a different aspect of the design to fabrication data transfer process. In this monthly column, Karel Tavernier explains in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data.

Chapter 17: Pads on Copper Layers

The main function of copper is to conduct, but pads also have other functions: SMD, component, connector and test pads on outer layers provide electrical access to the circuit via the solder, paste and platings that they carry; thermal relief pads confine heat; and via pads, as well as providing electrical connections between the track and the barrel, also provide mechanical support for the barrel, and create room for drill positioning tolerances.

It is essential that pads be identified individually during the design and CAM stages so that they can be treated appropriately during the production processes: Via pads on soldermasks need a different treatment from SMD pads, and connector pads that are to be gold plated need a special gold mask for the plating process. And for electrical test, the test probes will only do their work properly if the location, size and shape of all pads is known. It is also important to realise that copper pads must be differentiated from other copper features when compensating for fabric
production tolerances, as tolerances on pads are often tighter than those on conductive copper. Thus CAM needs to know not only where and what the pads are, but must also be able to edit them efficiently. Consequently, pads must be differentiated from other copper features, but they must also be classified separately by type, size and function so that they can be modified separately.

The way to do this is in Gerber is simple: All pads are represented using the flash of an aperture, with different apertures representing different types of pads, even if they are similar in size and shape. So a component pad and a via pad that are the same size will have different aperture numbers, making them easy to select and treat according to their different needs. Pads should only be made using flashes, and flashes should only be used to make pads.

Painted (stroked) pads are evil because they are so hard to edit. If a Gerber file served merely as an image, painted pads would be fine. However, a Gerber file must also be editable, which, as we said, is not possible for painted pads.

Remember: All pads must be flashes, and all flashes must be pads.

Further Notes on Copper Pads

Always flash embedded pads
Embedded pads are pads that are fully within a bigger copper area (e.g., a via pad in an SMD pad, or an SMD pad on a copper pour). Image-wise these pads have no effect; whether they are present or absent, the image remains the same. However, CAM must know where and what the pads are, and a valid Gerber file will convey that information. The embedded pads must be present in your Gerber file; don’t “optimize” your output by removing them!

Do not use donuts!

Sometimes pads on a plated hole are represented by a donut rather than a solid pad (Figure 1). Presumably, this is to make room for the drill hole or to indicate that copper will be removed. And it is true, copper will be removed. However the donut is very impractical because it does not fit how the copper is removed. The copper is not removed by imaging. First a solid pad is created by imaging, and then the pad is drilled. Consequently, CAM must laboriously replace all the donuts with solid pads to prepare for imaging. Furthermore with non-plated pads which typically truly are donuts, plated donuts are confusing. Drill plated pads must be solid (Figure 2). Whatever you want to express by using a donut is better expressed in another way.

Chapter 18: The contents of the fabrication data set

All files in a fabrication data set are stored in an industry standard archive format (e.g., rar, zip, 7z). The archive should only contain data
pertaining to one single PCB. Putting more than one PCB in an archive is confusing; even if you use a clever file naming scheme or comprehensive explanatory note, you are potentially creating a lot of confusion by putting different PCBs in the same archive.

Remember: one PCB, one archive.

The question is what must and must not be included in the fabrication data set. Obviously, the archive must contain all data needed to fabricate the board, in a standard and unequivocal format and manner. Less obviously, the archive must not contain other files, superfluous data or duplicates. The reason is that the manufacturer must check each file to see if it contains relevant instructions. Superfluous files waste his time and increase the risk that he misses something essential. Aperture list files are superfluous, for example, as all the required aperture information is in the Gerber files. CAD data is also useless as it requires CAD software to handle it. Duplicate information is even worse as the fabricator must compare the different files to check whether they contain conforming instructions, and conflicts raise questions about what is now valid. Duplicate image information (e.g., in Gerber and ODB++ format) is especially aggravating as images are complex and hard to compare—which tolerances apply?

It is mandatory that one single Gerber file should be provided for each patterned layer (copper, solder mask, legend, etc.) and for each drill sequence present.

This rule is violated every time that only one solder mask is provided “because top and bottom are identical.” This obnoxious habit may save a few bytes but then questions arise about whether a mask was forgotten and which masks must now effectively must be on the board. Confusion. The space saving is illusory anyway as the first thing the CAM operator must do is to create two masks from the single file. A bigger archive is better than a confusing archive, and when both masks are present, even if they are identical, everything is clear.

Also mandatory are all fabrication drawings—in Gerber format—and fabrication instructions such as finishes, ROHS etc. If it is not mandatory, it must not be there.

Finally, and even if this seems like a superfluous duplication of data, the CAD netlist should always be included (Chapter 8 in this series). This genuinely original data provides a powerful and essential checksum on the data, and is far better than a netlist generated from the image data, which is only a reverse-engineered approximation.

Make the fabrication data set as simple as possible, but no simpler.

Karel Tavernier is managing director of Ucamco.