© Copyright Ucamco NV, Gent, Belgium

All rights reserved. This material, information and instructions for use contained herein are the property of Ucamco. The material, information and instructions are provided on an AS IS basis without warranty of any kind. There are no warranties granted or extended by this document. Furthermore Ucamco does not warrant, guarantee or make any representations regarding the use, or the results of the use of the software or the information contained herein. Ucamco shall not be liable for any direct, indirect, consequential or incidental damages arising out of the use or inability to use the software or the information contained herein.

The information contained herein is subject to change without prior notice. Revisions may be issued from time to time to advise of such changes and/or additions. No part of this document may be reproduced, stored in a data base or retrieval system, or published, in any form or in any way, electronically, mechanically, by print, photoprint, microfilm or any other means without prior written permission from Ucamco.

This document supersedes all previous dated versions. All product names cited are trademarks or registered trademarks of their respective owners.

Correspondence regarding this publication can be sent to:

Ucamco NV
Bijenstraat 19,
B-9051 Gent,
Belgium

For more information:

Our web site: http://www.ucamco.com
E-mail: info@ucamco.com

About Ucamco

Ucamco (formerly Barco ETS) is a market leader in PCB CAM software, photoplotting and direct imaging systems, with a global network of sales and support centers. Headquartered in Ghent, Belgium, Ucamco has over 25 years of ongoing experience in developing and supporting leading-edge photoplotters and front-end tooling solutions for the global PCB industry. Key to this success is the company's uncompromising pursuit of engineering excellence in all its products. Ucamco also owns the IP rights on the Gerber File Format through its acquisition of Gerber Systems Corp. (1998).

Helpdesk

<table>
<thead>
<tr>
<th>Europe, Middle East, Africa, Latin Amerika</th>
<th>Asia Pacific</th>
<th>North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Support for Plotters, Software en ManiaBarco AOI</td>
<td>Please contact our business partner for your country during support working hours</td>
<td>Customer Support for Plotters, Software en ManiaBarco AOI</td>
</tr>
<tr>
<td>Monday - Friday: 08.00 AM - 6.00 PM MET ☎ +32 9 216 99 00</td>
<td>see contacts page</td>
<td>Monday - Friday: 08.00 AM - 6.00 PM Pacific Time</td>
</tr>
<tr>
<td>General support: support@ucamco.com</td>
<td></td>
<td>Saturday: 10 am to 4 pm Pacific Time</td>
</tr>
<tr>
<td>License: license@ucamco.com</td>
<td></td>
<td>+1 949 632 6895</td>
</tr>
<tr>
<td>Java™ HyperTool: hypertool@ucamco.com</td>
<td></td>
<td>General support: support@ucamco.us</td>
</tr>
<tr>
<td>HyperScript: hyperscript@ucamco.com</td>
<td></td>
<td>License: license@ucamco.us</td>
</tr>
<tr>
<td>General information: info@ucamco.com</td>
<td></td>
<td>Java™ HyperTool: hypertool@ucamco.com</td>
</tr>
<tr>
<td>Sales: sales@ucamco.com</td>
<td></td>
<td>HyperScript: hyperscript@ucamco.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General information: info@ucamco.us</td>
</tr>
</tbody>
</table>
Visual HyperScript API Specification

Classes

- class Arc
- class Line
- class Point
- class Rectangle

Functions

- void abort (String sInfo)
- void activate (String layClass, String laySubclass, int layNum, boolean layAct)
- void activate (ObjectList layerID, boolean layAct)
- void activate (String layClass, String laySubclass, boolean layAct)
- void activateAllLayers ()
- void activateBottomLayers (boolean layAct)
- void activateTopLayers (boolean layAct)
- void activityClean (String sMode)
- void activityClean ()
- void activityRestore (String sMode)
- void activityRestore ()
- void activityStore (String sMode)
- void activityStore ()
- void addBreak (Point line_fp, Point line_tp)
- void addBreak (double line_fx, double line_fy, double line_tx, double line_ty)
- void addBreak (Line line)
- int addCFMEEAlignmentPoint (double point_x, double point_y)
- int addCFMEEAlignmentPoint (Point point)
- void addDPF (String dpf, String layName, String subClass, int layPos, String readable)
- void addDPFDrill (String dpf, int layPos, int drillTop, int drillBot)
- void addDPFEextra (String dpf, String attach, boolean bNoChecks)
- void addDPFEextra (String dpf, String attach)
- void addDPFLayer (String dpf, int layPos)
- int addETMComponentHiPot (int etmId, int primId, int NetPrim, int NetSecond, String TestVolt, String Duration, String LeakCurrent, String VoltType, String StartVolt, String VoltRise)
- int addETMComponentHiPot (int etmId, int primId, double XStart, double YStart, String AccStart, double XEnd, double YEnd, String AccEnd, int NetPrim, int NetSecond, String TestVolt, String Duration, String LeakCurrent, String VoltType, String StartVolt, String VoltRise)
- void addFault (String sType, double oRectangle_xmin, double oRectangle_ymin, double oRectangle_xmax, double oRectangle_ymax, String sInfo)
- void addFault (String sType, Rectangle oRectangle, String sInfo)
- void addFault (String sType, Line oLine, String sInfo)
- void addFault (String sType, Point oPt, String sInfo)
- void addFault (String sType, double oPt_x, double oPt_y, String sInfo)
- void addHyperScriptMenuItem (String sScriptPath, String sMenuItemLabel)
- void addLayer (double dThicken)
- void addObjectAttribute (String sAttrName)
- void addObjectAttribute (String sAttrName, String sAttrValue)
- void addOptimizedMaskLayer (double dMinRing, double dMaxRing, double dMaskToCopper, double dMaskToMask, double dBigRing)
- void addRefPoint (int lndex, double pPnt_x, double pPnt_y, boolean bOnAllActiveLay)
- void addRefPoint (int lndex, Point pPnt, boolean bOnAllActiveLay)
- void addShavedMaskLayer (double dThicken, double dPadToTrack, double dPadToPad)
- void addTeardrops (int iMode, double dRelDiam, double dRelDist, double dAbsDiam, double dAbsDist, double dMinClr, int iOnRect, int iOnHoles)
- void addTeardrops (int iMode, double dRelDiam, double dRelDist, double dAbsDiam, double dAbsDist, double dMinClr, int iOnRect)
- int addYsphotechAlignmentPoint (int region, double point_x, double point_y)
int addYsphotechAlignmentPoint (int region, Point point)
void align_blocks (double dTolerance, boolean bOnAllLayers)
void AmliAddUser (String sUser, String sPassword, String sAuthorityLevel)
void AmliChangeUserPwd (String sUser, String sPassword, String sNewPassword)
String AmliCheckUser (String sUser, String sPassword)
void AmliRemoveUser (String sUser)
String analyzeExternal (String sExtName)
void angle (double angle)
double angle ()
void apeAnamorphicScale (double dDistanceX, double dDistanceY, boolean bProportional)
void apeAnamorphicScale (double dScaleX, double dScaleY)
void apeAttribute (String name, String value)
String apeAttribute (String name)
String apeAttribute ()
void apeCorners (String sCorners)
String apeCorners ()
void apeCreateBox (int apeNum, double xsize, double ysize, String corners, double xcutoff, double ycutoff)
void apeCreateCircle (int apeNum, double dia)
void apeCreateContour (int apeNum, double stroke)
void apeCreateDonut (int apeNum, double outer, double inner, String kind)
void apeCreateOblong (int apeNum, double xsize, double ysize)
void apeCreateOctagon (int apeNum, double size)
void apeCreateRectangle (int apeNum, double xsize, double ysize)
void apeCreateText (int iApeNum, double dHeight, String sText, double dRotation)
void apeCreateText (int iApeNum, double dHeight, String sText)
void apeCreateThermal (int apeNum, double outer, double inner, double gap, int numGap, double angle, String kind)
Rectangle apeEnclosingBox ()
int apeExtlinkCheck ()
String apeExtlinkPath ()
String apeExtlinkPathString ()
boolean apeExtlinkRelative ()
int apeExtlinkStatus ()
void apeGap (double dGap)
double apeGap ()
boolean apeHasPattern (boolean bUsed)
void apeHeight (double dHeight)
double apeHeight ()
int apeIndex ()
String apeInfo ()
void apeInner (double dInner)
double apeInner ()
void apeKind (String sKind)
String apeKind ()
int apeMaxNetNumber ()
void apeMirror (String sMirror)
String apeMirror ()
void apeName (String sName)
String apeName ()
void apeNumber (int iNumber)
int apeNumber ()
void apeNumberGap (int iNumGap)
int apeNumberGap ()
int apeNumberOfObjects (String sObjectClass)
int apeNumberOfObjects ()
int apeNumberOfRegions ()
int apeNumContours ()
void apeOuter (double dOuter)
double apeOuter ()
void apePattern (String sPattern)
String apePattern ()
void apePatternAngle (double dPatternAngle)
 double apePatternAngle ()
void apePatternStep (double dPatternStep)
 double apePatternStep ()
void apePatternWidth (double dPatternWidth)
 double apePatternWidth ()
void apePatternX (double dX)
 double apePatternX ()
void apePatternY (double dY)
 double apePatternY ()

 Rectangle apeRectangle ()
void apeReverse (boolean bReverse)
 boolean apeReverse ()
void apeRotation (double dRotation)
 double apeRotation ()
void apeScale (double dScale)
 double apeScale ()
 boolean apeSelection ()

 Rectangle apeSelectionEnclosingBox ()
String apeShape ()
 void apeSize (double dSize)
 double apeSize ()
 void apeStartAngle (double dStartAngle)
 double apeStartAngle ()
void apeString (String sString)
 String apeString ()
void apeStroke (double dStroke)
 double apeStroke ()
 double apeSurface ()
void apeThickenThin (double value, boolean keepArcs)
 void apeWidth (double dWidth)
 double apeWidth ()
void apeXCutOff (double dXCutOff)
 double apeXCutOff ()
void apeXSize (double dXSize)
 double apeXSize ()
 void apeYCutOff (double dYCutOff)
 void apeYCutOff ()
void apeYSIZE (double dYSize)
 double apeYSIZE ()
 int applyHorns (String hornType, double minimumClearance, ObjectList params)
 Arc Arc (double ptFromX, double ptFromY, double ptToX, double ptToY, double ptCenterX, double ptCenterY, String sSense, String sUnits)
 Arc Arc (double ptFromX, double ptFromY, double ptToX, double ptToY, double ptCenterX, double ptCenterY, String sSense)
 Arc Arc (Arc oArc)
 Arc Arc (Point ptFrom, Point ptTo, Point ptCenter, String sSense)
void autofixtureBuildFixture (boolean bFixtureBuild, String sFixture)
 void autofixtureDo ()
void autofixtureMicroAdjustment (boolean bMicroAdjustment, int iNbrOfTestPoints, double dTestPointDiameter, double dTestPointShiftEdge, double dTestPointShiftValue, double dTestPointPitch, double dClearanceFactor, double dCenterDiameter)
void autofixtureNetlist (boolean bNetlist, boolean bNetlistBuild, boolean bNetlistExpand)
void autofixtureOutput (boolean bOutput)
void autofixtureTestpoints (boolean bTestPoints, int iLoop, boolean bUseMasks, boolean bProbeSwaping, boolean bHandlePaintedPads, boolean bCircuitryCheck, boolean bFilterCopperAreas, boolean bViaOfSMDs, boolean bDrillsWithoutPad)
void autofixtureTestpointsBot (boolean bPointsBot1, boolean bPointsBot2, boolean bPointsBot3, boolean bPointsBot4, boolean bPointsBot5, boolean bPointsBot6, boolean bPointsBot7)
void autofixtureTestpointsTop (boolean bPointsTop1, boolean bPointsTop2, boolean bPointsTop3, boolean bPointsTop4, boolean bPointsTop5, boolean bPointsTop6, boolean bPointsTop7)
void blockEdit ()

void blockMultiEdit ()

int BlockReconstruct ()

void boardSnapshot (boolean graph, String templPath, boolean pio, String pioPath)

void buildSubJobs ()

void calculatelImpedance (String simpConfig, ObjectList parameters)

boolean canRead (ObjectList fileInfo)

boolean canWrite (ObjectList fileInfo)

void center (double center_x, double center_y)

void center (Point center)

Point center ()

void centerX (double centerX)

void centerY (double centerY)

void chain ()

void chamferJoin (double pt_x, double pt_y, double disX, double disY)

void chamferJoin (Point pt, double disX, double disY)

void changeDirection (double p_x, double p_y)

void changeDirection (Point p)

int changePrioPlotQueue (String sRipHost, int iJobId, int iPriority)

boolean checkDrillInfo (boolean bSelNonPlated, boolean bAssignAttributes, boolean bBlocksOnly)

String chooseDirPath (String sTitle, String sStartDir)

String chooseDirPath (String sTitle)

String chooseDirPath ()

String chooseFilePath (String sTitle, String sStartDir, String sFileMask)

String chooseFilePath (String sTitle)

String chooseFilePath (String sStartDir, String sFileMask)

String chooseFilePath ()

void cleanApertures ()

void cleanApeTables ()

void cleanETMComponentLayers (int type)

void cleanSubJobs ()

void cleanUfd (String sUfdName)

void cleanUnderBlo ()

void cleanup (double dReconstructArcs, double dValidateArcs, double dRemoveObsoleteObjects, double dRemoveSmallObjects, boolean bReconstructArcs, boolean bValidateArcs, boolean bRemoveObsoleteObjects, boolean bRemoveSmallObjects, boolean bReconnectObjects)

void clearance (double clearance)

double clearance ()

void clearanceCheckMAT (double dPadSpread, double dSmdSpread, double dTrackSpread, double dAreaSpread, double dPadPadClearance, double dPadSmdClearance, double dPadTrackClearance, double dPadAreaClearance, double dSmdSmdClearance, double dSmdTrackClearance, double dSmdAreaClearance, double dTrackTrackClearance, double dTrackAreaClearance, double dAreaAreaClearance, boolean bCheckSameNetSpacing, boolean bFastMode, int iShiftMode, double dMinCopper)

void clearanceCheckMAT (double dPadSpread, double dSmdSpread, double dTrackSpread, double dAreaSpread, double dPadPadClearance, double dPadSmdClearance, double dPadTrackClearance, double dPadAreaClearance, double dSmdSmdClearance, double dSmdTrackClearance, double dSmdAreaClearance, double dTrackTrackClearance, double dTrackAreaClearance, double dAreaAreaClearance, boolean bCheckSameNetSpacing, boolean bFastMode)

void clearanceCheckMAT (double dPadSpread, double dSmdSpread, double dTrackSpread, double dAreaSpread, double dPadPadClearance, double dPadSmdClearance, double dPadTrackClearance, double dPadAreaClearance, double dSmdSmdClearance, double dSmdTrackClearance, double dSmdAreaClearance, double dTrackTrackClearance, double dTrackAreaClearance, double dAreaAreaClearance, boolean bCheckSameNetSpacing, boolean bFastMode)

void clearMessages ()

boolean clipping (int iClipReference, String sClipSide, double dClipClr, double dMinLineLength, boolean bRounded)

boolean clipSilk (double dClr, double dMinLen)

void closeAMLIJobManager ()

void closeAnamorphicScale ()

void closeApeCreator ()
void closeApeEditor ()
• void closeApertureAttributes ()
• void closeApertureManager ()
• void closeAttributeEditor ()
• void closeAttributeManager ()
• void closeAutoDrill ()
• void closeAutoDrillEditor ()
• void closeAutoFixture ()
• void closeBarcode ()
• void closeBarcode128 ()
• void closeBoardAnalyzer ()
• void closeBoardSnapshot ()
• void closeCalculatorSetup ()
• void closeCamtek ()
• void closeCheckList ()
• void closeCheckListDefineChecklist ()
• void closeCheckListDefineSteps ()
• void closeClipping ()
• void closeColor ()
• void closeConnect ()
• void closeContourHandling ()
• void closeConvertAttributes ()
• void closeCopperBalance ()
• void closeCopperRepair ()
• void closeCoverlayOptimizer ()
• void closeCU9000Dialog ()
• void closeDatums ()
• void closeDistort ()
• void closeDrawSlots ()
• void closeDRC ()
• void closeDrillInfo ()
• void closeDrillMap ()
• void closeDrillOptimizer ()
• void closeDrillRoutSetups ()
• void closeDrillTolerance ()
• void closeDrillToolManager ()
• void closeDsAoi ()
• void closeDSAOIialog ()
• void closeDsAoiPreview ()
• void closeEditingToolbox ()
• void closeEditVectorText ()
• void closeErrors ()
• void closeEtchCompensation ()
• void closeExpand ()
• void closeExternalLinkManager ()
• void closeFiducials ()
• void closeFillAngledPattern ()
• void closeFillPattern ()
• void closeFillVector ()
• void closeFlashMaker ()
• void closeFlexManager ()
• void closeFlipJob ()
• void closeFrame (String sFrameName)
• void closeGridParameters ()
• void closeHiPot ()
• void closeImageCompare ()
• void closeImpedanceControl ()
• void closeImportODBxx ()
• void closeInsertContourText ()
• void closeInsertVectorText ()
• void closeJobDefinition ()
void closeJobEdit()
void closeJobEditor()
void closeJobEditorOptions()
void closeJobMerge()
void closeJobPlaneSetup()
void closeJobPrint()
void closeLayerEdit()
void closeLegendOptimizer()
void closeLoadCheckList()
void closeMagnifier()
void closeMarkupAssistant()
void closeMessages()
void closeMLIOutput()
void closeModels()
void closeNetCompare()
void closeNonFunctionalPad()
void closeNumbers()
void closeObjectAttributes()
void closeObjectCompare()
void closeOutputAccumatch()
void closeOutputAOI()
void closeOutputCAD()
void closeOutputCamtek()
void closeOutputDrillRout()
void closeOutputDsDi()
void closeOutputDsDiPreview()
void closeOutputNetlist()
void closeOutputOrbot()
void closeOutputSapphire()
void closeOutputScoring()
void closeOutputSmartArgos()
void closeOutputTrackscan()
void closeOutputUxpAutomanager()
void closeOutputUxpEtec()
void closePanelFramesCoupons()
void closePanelLinks()
void closePanelPlus()
void closePanelReproduce()
void closePanelSetup()
void closePanelStepRepeat()
void closePlaneAdjuster()
void closePlotParameters()
void closePPMonitor()
void closeQueryNet()
void closeQueryObject()
void closeReferencePoints()
void closeRegister()
void closeRemoveAttributes()
void closeRepair()
void closeRoutManager()
void closeRoutManagerCleanUp()
void closeRoutManagerDimensioning()
void closeRoutManagerEditor()
void closeRoutManagerTools()
void closeSaveLayout()
void closeSecureEtchCompensation()
void closeSelections()
void closeSetupOptions()
void closeSetupSave()
void closeShavePads()
void closeSignalLayerAdjuster()
void closeSignalLayerAdjusterAssistant()
void closeSilkOptimizer()
void closeSmartCamtek()
void closeSmartDRC()
void closeSmartFix()
void closeSmartplot()
void closeSmartSR()
void closeSmartStart()
void closeSoldermask()
void closeSoldermaskOptimizer()
void closeTearDrop()
void closeTechnicalAnalyzer()
void closeTestpointEdit()
void closeToolbarManager()
void closeToolbars()
void closeTransformObjects()
void closeTransformObjectsBGAPads()
void closeTransformObjectsBGATracks()
void closeTransformObjectsEdit()
void closeTransformObjectsRescale()
void closeUcamDbEditor()
void closeUndoRedoDetails()
void closeUtest()
void closeUtestUtilities()
void closeValidateLayer()
void closeVectorTextFont()
void closeVerifyArcsDraws()
void closeViewGuide()
void colorAll (String exclSubClass, boolean bKeepLayActivity)
void colorAll (String exclSubClass)
void compareImage (String reference, boolean bAutoAlign, double missingTol, double exceedingTol, int iErrorAccuracy, ObjectList revPolArr, int compSelMode)
void compareImage (String reference, boolean bAutoAlign, double missingTol, double exceedingTol, int iErrorAccuracy, ObjectList revPolArr)
void compareImage (double missingTol, double exceedingTol, int iErrorAccuracy, boolean bRevPolarityCur, boolean bRevPolarityRef, int compSelMode)
void compareImage (double missingTol, double exceedingTol, int iErrorAccuracy, boolean bRevPolarityCur, boolean bRevPolarityRef)
void compareNet (int iMode, boolean bCheckFlash)
void compareNet (int iMode, boolean bCheckFlash, String sReferenceFile, boolean bPanelize)
void compareNet (int iMode, boolean bCheckFlash, boolean bIgnoreOutline, double dOutlineMargin, boolean bIgnoreNPTH, double dNPTHExpandMargin, String sReferenceFile, boolean bPanelize)
void compareNet (boolean bShorts, boolean bOpens, boolean bIgnoreOutline, double dOutlineMargin, boolean bIgnoreNPTH, double dNPTHExpandMargin, String sReferenceFile, boolean bPanelize, boolean bBuildNetlist)
void compareObjects (String referenceJob, double xTol, double yTol, boolean bWindow, boolean bObjMoved, boolean bObjAdded, boolean bObjNet, boolean bApeShape, boolean bApeSize, boolean bApeOrder)
void compensate (String sSense, double dis)
void complexEdit ()
int connectPadTrack (double dActiveRadius, double dSnapRadius, boolean bUseNetlist)
void connectTracks ()
boolean contourizeBitmap (int iPpi, double dMargin, double dDx, double dY)
void contourizeExact ()
void contourizeExactAperture ()
boolean contourizePatterns (int iPpi)
boolean contourizePatternsinJob (int iPpi)
void contourThickenThin (double value, boolean bKeepArrows)
boolean convertGar (String sInputFile, String sGarFile, String sOutputFile)
void copperBalancePad (double dMinClrToCopper, double dMinClrToBoard, double dMinConSurface,
void copperBalanceSolid (double dMinClrToCopper, double dMinClrToBoard, double dMinConSurface, double dApeSize)
void copperBalanceTrack (double dMinClrToCopper, double dMinClrToBoard, double dMinConSurface, String sLineStyle, double dPatternClr, double dApeSize, double dRotation)
void copperCount (String sOpt)
void copperRepair (String sOpt, double smallerThan, double minSize, double expand)
void copy (double pt_x, double pt_y)
void copy (Point pt)
void copyOutline (double refPoint_x, double refPoint_y, double offset_x, double offset_y, double rotation)
void copyOutline (Point (Point offset, double rotation)
void copyToClipboard ()
void coreInfo ()
int countAmbiguousContours ()
int countAmbiguousContoursOnLayer ()
int countInvalidArcs ()
int countInvalidArcsOnLayer ()
int countInvalidDraws ()
int countInvalidDrawsOnLayer ()
int countOpenContours ()
int countOpenContoursOnLayer ()
int countOverlapContours ()
int countOverlapContoursOnLayer ()
int countUndefinedApertures ()
int countUndefinedAperturesOnLayer ()
int countZeroDrawsArcs (double dMaxLength, boolean bFunctional, boolean bNonFunctional)
int countZeroDrawsArcsOnLayer (double dMaxLength, boolean bFunctional, boolean bNonFunctional)
void createAperture (int iApeNum, String sApeName, String sApeDef, ObjectList attrArray)
boolean createBarcode128 (double dHeight, double dNarrowX, String sValue)
boolean createBarcode39 (double dHeight, double dNarrowX, double dRatio, String sValue)
boolean createBarcodeInterleaved25 (double dHeight, double dNarrowX, String sValue)
void createBlockAperture (int iApeNum, String sApeName, String sApeDef, ObjectList attrArray, int iMode, boolean bWithCenter, double pt_x, double pt_y, String sExtFile)
void createBlockAperture (int iApeNum, String sApeName, String sApeDef, ObjectList attrArray, int iMode, boolean bWithCenter, Point pt, String sExtFile)
void createComplexAperture (int iApeNum, String sApeName, String sApeDef, ObjectList attrArray, boolean bUseRegion, boolean bWithCenter, double pt_x, double pt_y)
void createComplexAperture (int iApeNum, String sApeName, String sApeDef, ObjectList attrArray, boolean bUseRegion, boolean bWithCenter, Point pt)
void createComplexAperture (int iApeNum, String sApeName, String sApeDef, ObjectList attrArray, boolean bUseRegion, boolean bWithCenter, Point pt, String sExtFile)
void createDataMatrix (String sTextToEncode, String sMode, String sFormat, double dDotSize, double dRotation, String sMirror, double dClearance, boolean bReverse)
void createDrill (String layName, String subClass, int from, int to)
void createDrill (int laynum, int drillFrom, int drillTo)
void createExtra (String layName, String subClass, String attach, int index)
void createExtra (String layName, String subClass, String attach)
void createExtra (String attach)
void createLayer (String layName, String subClass, int layPos, String readable)
void createLayer (int laynum)
void createQRCode (String sCode, double dDotSize, double dAngle, String sMirror, double dClr, double dLabelClr, String sLabelPos, boolean bMicroQR, boolean bReverse)
void createQRCode (String sCode, double dDotSize, double dAngle, String sMirror, double dClr, String sLabel, double dLabelClr, String sLabelPos, boolean bMicroQR, boolean bReverse)
void createQRCode (String sCode, double dDotSize, double dAngle, String sMirror, double dClr, boolean bMicroQR, boolean bReverse)
void createSubJob (int from, int to, int selectedSubJob, int selectedLevel)
void createVoronoiDiagram (int iEdgeTypes)
void createVoronoiDiagram (int iEdgeTypes, boolean bExpandArcs)
void createVoronoiEdgesExtFile (boolean bExpandArcs, String sFilePath, String sOptions)
void CU9000ApplyPlotstamps (ObjectList plotstamps)
boolean CU9000CheckPlotstamps ()
boolean CU9000DetectAutoAreas (String resultLayerName, String referenceLayerName, double margin)

boolean CU9000Detect Exact Areas (String resultLayerName, int blockMode, String pcbName, String referenceLayerName, double margin, double outline)

int CU9000DetectGlobalAlignment (String sAPRefLayerName)

int CU9000DetectGlobalAlignment ()

int CU9000DetectLocalAlignmentPoints (String sAPRefLayerName)

int CU9000DetectLocalAlignmentPoints ()

boolean CU9000DetectRectangularAreas (String resultLayerName, int blockMode, String pcbName, String referenceLayerName, double margin)

ObjectList CU9000GetPlotstamps ()

void CU9000GUIApply ()

void CU9000GUILoadAlignment (String sAlignmentPath)

void CU9000GUILoadBrd (String sBrdPath)

void CU9000GUILoadRgi (String sRgiPath)

boolean CU9000LoadBoardSetup (String path)

boolean CU9000LoadResistSetup (String path)

boolean CU9000LoadResources (String sPropertiesPath, String sPropertiesName, String sConversionFileName)

ObjectList CU9000OrderPlotstamps (Object[] plotstamps, String sLevel, String sAtLevel, String sStart, String sOrder)

boolean CU9000Output (String machine)

void CU9000SaveBPIs ()

void CU9000SaveLocalAlignmentPoints (String sOutputFilePath)

void CU9000SaveLocalAlignmentPoints (String sOutputFilePath, boolean bShareAlignmentMarks)

boolean CU9000SetParameters (String xmlFile)

void cutToClipboard ()

void dbBoolean (String dbKey, Boolean bValue)

boolean dbBoolean (String dbKey)

boolean dbBooleanDef (String dbKey, boolean bDefault)

double dbDouble (String dbKey)

double dbDoubleDef (String dbKey, double dDefault)

void dbInteger (String dbKey, Integer iValue)

int dbInteger (String dbKey)

int dbIntegerDef (String dbKey, int iDefault)

void dbPath (String dbKey, String sPath)

String dbPath (String dbKey)

String dbPathDef (String dbKey, String sDefault)

void dbString (String dbKey, String sValue)

String dbString (String dbKey)

String dbStringDef (String dbKey, String sDefault)

void dbUnitValue (String dbKey, String sValue)

void dbUnitValue (String dbKey, Double dValue)

double dbUnitValue (String dbKey)

double dbUnitValueDef (String dbKey, double dDefault)

double dbUnitValueDef (String dbKey, String sDefault)

void defaultOrder ()

void defineFirst (double p_x, double p_y)

void defineFirst (Point p)

void defineGroup (double p_x, double p_y, int iGroupNumber)

void defineGroup (Point p, int iGroupNumber)

void defineSelectedGroup ()

void delete ()

void deleteAllCFMEEAlignmentPoints ()

void deleteAllRefPoints (boolean bOnAllActiveLay)

void deleteAllYsphotechAlignmentPoints (int region)

void deleteAperture ()

void deleteApertureAttribute (String sAttributeName)

void deleteCFMEEAlignmentPoint (int point)

void deleteDouble ()
void deleteLayerByClass (String className, String subClass, int num, String side)
void deleteLayersByActivation (boolean active)
void deleteLayersByName (String layName)
void deleteLayersByNames (String layNames)
void deleteLayersByPlane (int plane)
void deleteRefPoint (int index, boolean bOnAllActiveLay)
void deleteRefPoints (ObjectList Indexes, boolean bOnAllActiveLay)
void deleteSubJob (int index, int level)
void deleteTrueObjects ()
void deleteWithApe ()
void deleteWorkspace (String sWorkspaceName)
void deleteYsphotechAlignmentPoint (int region, int point)
void deleteZeroLengthDraws (double dMaxLength, boolean bFunctional, boolean bNonFunctional)
void deselectAll ()
void deselectAllApertures ()
void deselectAperture (ObjectList apeIndexArray)
void deselectAperture ()
void deselectObjectAttribute (String sAttrName, String sAttrValue)
void deselectObjectAttribute (String sAttrName)
void deselectObjectByAttribute (String sAttrName, String sAttrValue)
void deselectObjectByAttribute (String sAttrName)
boolean detectPCBOutlines (String sLayName, String sParams)
boolean DetectPlaceHoldersAtLayer (String sHandlerName, String sParams)
boolean DetectPlaceHolders (String sHandlerName, String sParams)
void dimensioning (String sType, double dApertureSize, ObjectList oPoints, boolean bShowErrors, double dArrowHeadWidth, double dArrowHeadHeight, double dRuleToElement, double dRuleToDimLine, double dTextToDimLine, double dTextHeight, double dTextWidth, double dRuleToElement, double dRuleToDimLine, double dTextToDimLine, double dTextHeight, double dTextWidth, double dRuleToElement, double dRuleToDimLine, double dTextToDimLine, double dTextHeight, int iFormat, boolean bProjectionHorizontal, boolean bProjectionVertical, String sFontName, int iFontStyle, int iFontSize, String sLabel)
String direction ()
void direction (String sDirection)
void distance (double distance)
double distance ()
boolean distort (double x, double y, double pCenter_x, double pCenter_y)
boolean distort (double x, double y, Point pCenter)
boolean distort (double x, double y)
void doActiveFunction ()
void doCancelActiveFunction ()
void doCopy (double offset_x, double offset_y)
void doCopy (Point offset)
void doMove (double offset_x, double offset_y)
void doMove (Point offset)
void doOption (String sOption)
String doOption ()
void doRemoveAttribute (boolean jobAttr, boolean layAttr, boolean apeAttr, boolean objAttr)
void drag (double clickp_x, double clickp_y, double dRadius, double offset_x, double offset_y, double rect_xmin, double rect_ymin, double rect_xmax, double rect_ymax)
void drag (Point clickp, double dRadius, Point offset, Rectangle rect)
void drag (double clickp_x, double clickp_y, double dRadius, double offset_x, double offset_y)
void drag (Point clickp, double dRadius, Point offset)
void dragAngle (double pt_x, double pt_y, double dRadius, double dist, double mlen, boolean bUseLimit)
void dragAngle (Point pt, double dRadius, double dist, double mlen, boolean bUseLimit)
void dragAngle (double pt_x, double pt_y, double dRadius, double dist, double mlen)
void dragAngle (Point pt, double dRadius, double dist, double mlen)
void dragLayer (String prevClass, String newClass, int intPrevPosition, int newPosition, boolean duplicate)
Line dragLine (String sLabel)
Rectangle dragRectangle (String sLabel)
void drawLastPlanesInFront (boolean bDo)
void drawSlots (String sDPFAPeRef, double dTolerance, String sDPFSlotApe)
void drawSlotsSelect (String sDPFAPe, double dTolerance)
void drillMapReplace (String sSymbolFilePath, ObjectList oMappingTable)
void DSAOIAlignmentApply()

void DSAOIAlignmentDetect(String sMachineType, String sObjectRestrictions, boolean bPositive, boolean bNegative, double dMinimumSize, double dMaximumSize)

boolean DSAOIApply()

void DSAOIAreaDetection(boolean detectImportantLine, boolean detectImportantSpace, boolean detectImportantClearance, boolean detectImportantDrill, boolean detectImportantFutureDrill, boolean detectImportantMaskOpenings, boolean detectProhibitCopper, boolean detectProhibitSpace, boolean detectProhibitNonfunctionalCopper, ObjectList importantLineWidth, Object[] importantSpaceWidth, double importantClearanceWidth, double importantDrillSpreadValue, double prohibitLineWidth, double prohibitLineWidth, double minSliverSize, String pathStrategy, boolean mergeOutput, boolean clipProhibitWithImportant, boolean outputNormalAreas, boolean maskPolarity, boolean paintedArea, double paintedAreaValue, String PCBName, boolean outputDrillBinary)

void DSAOIAreaDetection(boolean detectImportantLine, boolean detectImportantSpace, boolean detectImportantClearance, boolean detectImportantDrill, boolean detectImportantFutureDrill, boolean detectImportantMaskOpenings, boolean detectProhibitCopper, boolean detectProhibitSpace, boolean detectProhibitNonfunctionalCopper, ObjectList importantLineWidth, Object[] importantSpaceWidth, double importantClearanceWidth, double importantDrillSpreadValue, double prohibitLineWidth, double prohibitLineWidth, double minSliverSize, String pathStrategy, boolean mergeOutput, boolean clipProhibitWithImportant, boolean outputNormalAreas, boolean maskPolarity, boolean paintedArea, double paintedAreaValue, String PCBName, boolean outputDrillBinary)

void DSAOIAreasApply()

void DSAOIDetectRectangularArea(double dMargin, String sBlockMode, String sPCBName, String sReferenceLayerName, boolean bIsSingleLevel, boolean bIsInspection, boolean bIsPmiP1, boolean bIsPmiP2, boolean bIsDrcP1, boolean bIsDrcP2)

void DSAOIList()

void DSAOIListAreaApply()

void DSAOIListAreaOutput()

void DSAOIListAreaSelect()

void DSAOIListGroupValue(String sNewValue)

void DSAOIListRowDeselect(int iIndexFrom, int iIndexTo)

void DSAOIListRowSelect(int iIndexFrom, int iIndexTo)

void DSAOIListRowSelect(int iRow)

boolean DSAOILoadLayerListProfile(String pro)

boolean DSAOIOutput()

void DSAOlpinpointDetection(double dStep, double dInfinity, String sOutputFilePath)

void DSAOlpinpointDetection(double dStep, double dInfinity, String sPCBName, String sOutputFilePath, String sLocation)

void DSAOIPositionApply()

void DSAOISetApplyToBackLayers(boolean bValue)

void DSAOISetApplyToFrontLayers(boolean bValue)

void DTMCalculate(String sPlatingType, String sToleranceScript)

boolean DTMCreatSymbolDrawing()

boolean DTMLoadData()

void DTMLoadToleranceFile(String sToleranceFileName)

void DTMRmoveAttributes()

void DTMSaveDataToAttributes(String sJobName)
void DTMUpdateDPF (String sJobName)
void duplicateAperture ()
void duplicateLayer (String layName, String newName)
void dwAnnotate (String annotationLayerName, String sChipID)
void dwAnnotate (String annotationLayerName)
void dwApplyTransform (String sResultFilePath)
void editAperture (int iApeNum, String sApeName, String sApeDef)
void emptyClipboard ()
void enlargePads (String absRel, double aVal, boolean bExclcon, boolean bUseBGA)
String envString (String name)
void equalizeTrackSpace ()
void etchCompensation (boolean bUseExcludeAreas, boolean bCreateLayerBackup, boolean bShowLayerBackup, int iOutStyle, boolean bAsymmetricPadTrackComp, ObjectList arrPrefOffset)
void etchCompensation (boolean bUseExcludeAreas, boolean bUseCompensateAreas1, boolean bCreateLayerBackup, boolean bShowLayerBackup, int iOutStyle, boolean bAsymmetricPadTrackComp, ObjectList arrPrefOffset, Object[] arrCompLay1, Object[] arrCompLay2)
void expandArcs ()
void expandBlock ()
void expandNibble (double overlapValue, double pitchValue, boolean useOverlap)
void expandText ()
void expandTrueObjects ()
void expandVtx ()
void externalLinkManagerCheck ()
void filletJoin (double pt_x, double pt_y, double dis)
void filletJoin (Point pt, double dis)
void fillPolygon (boolean bDirection)
void fillPolygonCCW ()
void fillPolygonCW ()
void fillWithAngledPattern (String shape, double size, double pitch, double angle)
void fillWithPatternPads (String sKind, boolean bKeepEdge, double pGridOrigin_x, double pGridOrigin_y, double pGridStep_x, double pGridStep_y)
void fillWithPatternPads (String sKind, boolean bKeepEdge, Point pGridOrigin, Point pGridStep)
void fillWithPatternStarburst (int iSegments, String sKind, int dBlack, boolean bWithCenter, double pCenter_x, double pCenter_y, boolean bKeepEdge, double dEdgeWith)
void fillWithPatternStarburst (int iSegments, String sKind, int dBlack, boolean bWithCenter, Point pCenter, boolean bKeepEdge, double dEdgeWith)
void fillWithPatternTracks (String sPattern, double dStep, double dWidth, double dRotation, boolean bKeepEdge)
int fillWithVectors (double dOverlap, double dDiameter, int iApeCount, int iApeNum, String sFillOpt)
void findSections (String szOptions)
void findSlots ()
int findStandardShape (double dTolerance, String szOpt, String szAction)
void flashMakerDeleteComplex ()
void flashMakerDeselectComplex ()
void flashMakerFind ()
void flashMakerFindStandardShapes (Uxjob oJob)
void flashMakerReplace ()
void flashMakerReplaceStandardShapes (Uxjob oJob)
void flashMakerSetup (double minCutoff, double minSize, double maxSize, boolean useTol, double tol, boolean useMask, boolean deselNonModel)
void flashMakerSetup (double minCutoff, double minSize, double maxSize, boolean useTol, double tol, boolean useMask, boolean completelyFree, boolean deselNonModel)
void flipJob (String mirror, boolean bFlipBuildup, boolean bFlipAttachNone, String suffix)
void forEachApe (String sType)
void forEachApe ()
void forEachArc ()
void forEachDraw ()
void forEachDrill (String sSubClass)
void forEachDrill ()
void forEachExtra (String sSubClass, String sAttach)
void forEachExtra (String sSubClass)

void forEachExtra ()

void forEachFlash ()

void forEachI8Job (String serverName, String dbname, String username, String password, String context, String i8path)

void forEachInRectangle (Rectangle rect, boolean opt)

void forEachInRectangle (Rectangle rect)

Object forEachItem (ObjectList items)

void forEachJobNet ()

void forEachLayer (String sClass, String sSubClass, String sAttach)

void forEachLayer (String sClass, String sSubClass)

void forEachLayer (String sClass)

void forEachLayer ()

void forEachLayerNet ()

void forEachNet (int iNet)

void forEachObject (String sClass)

void forEachObject ()

void forEachPEInputJob ()

void forEachPEPanelJob ()

void forEachPESolution ()

void forEachRegion ()

void forEachSignal (String sSubClass)

void forEachSignal ()

void forEachVtxt ()

int GDSII_outLayer (String filename)

int GDSII_outLayer (String filename, String options)

boolean generateContours (double dGap, double dOverlap)

boolean generateContoursOnLayer (double dGap, double dOverlap)

ObjectList getAttrCategories ()

ObjectList getAttrNames (String sCategory)

ObjectList getAttrValues (String sAttributeName)

int getCount (String sType)

ObjectList getFaultTypes ()

String getFileLastModified (ObjectList fileInfo)

String getName (ObjectList fileInfo)

String getParent (ObjectList fileInfo)

long getSize (ObjectList fileInfo)

Ulayer getLayer (ObjectList layerID)

ObjectList getLayerNames ()

ObjectList getLayers ()

Rectangle getLocationOnScreen (String sFrameName)

ObjectList getMode ()

ObjectList getNetAttrNames ()

ObjectList getNetNames ()

int getNetNumberByClick (double pt_x, double pt_y)

int getNetNumberByClick (Point pt)

Ulayer getNextLayer ()

ObjectList getODBxxSteps (String sPath)

int getPlotParam (String sKey, int iDefValue)

double getPlotParam (String sKey, double dDefValue)

String getPlotParam (String sKey, String sDefValue)

void grabWidget ()

void gridAlign (double dStep)

void gridCross (boolean bCross)

boolean gridCross ()

void gridOrigin (double ptOrigin_x, double ptOrigin_y)

void gridOrigin (Point ptOrigin)

Point gridOrigin ()

void gridOutline (double refPoint_x, double refPoint_y, double offset_x, double offset_y, int repeatX, int repeatY)

void gridOutline (Point refPoint, Point offset, int repeatX, int repeatY)
void gridStep (double dStepX, double dStepY)

- Point gridStep()
- double gridStepX()
- double gridStepY()
- void gridVisible (boolean bVisible)
- boolean gridVisible()
- void groupApeBy (String spec)
- void groupApertureDefinitions()
- void groupApertureNumbers()
- void groupAperturesByPolarity()
- double groupUFD (double dDistance)
- void groupUFD()
- void helpOnContext()
- void hideAll()
- void hideBlockStructure()

- void HitachiSpotDiameterCompensation (double dOffset, double dArcExpandMarginOverrideMicrons, int iMode, int iFastMode, boolean bAmSkipFlag, boolean bChangePolarity)
- void HitachiSpotDiameterCompensation (double dOffset, double dArcExpandMarginOverrideMicrons, int iMode, boolean bFastMode, boolean bAmSkipFlag, boolean bChangePolarity)

- String i8Jobarticleid()
- String i8JobBoardid()
- String i8JobCustomer()
- boolean i8Jobdelete()
- int i8JobDuration()
- Date i8JobFinishtime()
- int i8JobFullduration()
- int i8JobId()
- String i8JobLocation()
- int i8JobPriority()
- String i8JobProgress()
- int i8JobQueueposition()
- Date i8JobStarttime()
- Date i8JobSubmittime()

- void importEpc (String sPath)

- int importExternal (String sExtName, String sWheName, String sLanguage, boolean bKeepExtension, String sLayClass, String sLayAtt, String sStatus, String sWheLang, boolean bAnalyzed, String sWheFile, int iLocale)

- int importExternal (String sExtName, String sWheName, String sLanguage, boolean bKeepExtension)

 - int importExternal (String sExtName)

- void importFile (String sScriptPath)
- void importGwk (String sPath)

- String importHeptaCSV (String sCSVFile, String sDXFFile, String sOptions)

- void importHousei (String sPath)
- void importIpc (String sPath, String sVersion)

- void importIPC2581 (String sPath, String sStep, String sLayer)

- void importODBxx (String sPath, String sStep, String sLayer, ObjectList oReplaceCodeMap)

- void importODBxx (String sPath, String sStep, String sLayer)

 - void importODBxx (String sPath, String sStep)

- void importPolarBuildup (String sPolarFilePath)

- void importScript (String sScript)

- void importWf (String sPath)

- void innerCopperCount (boolean bUseMask, boolean bConfirmMaskUsage)

- void innerCopperCount()

- int insertArc (double arc_fx, double arc_fy, double arc_tx, double arc_ty, double arc_cx, double arc_cy, String arc_sense, int iNet, String sSelection)

- int insertArc (Arc arc, int iNet, String sSelection)

- void insertArc3Point (double pnt1_x, double pnt1_y, double pnt2_x, double pnt2_y, double pnt3_x, double pnt3_y)

- void insertArc3Point (Point pnt1, Point pnt2, Point pnt3)
void insertArc3Point(double pnt1_x, double pnt1_y, double pnt2_x, double pnt2_y, double pnt3_x, double pnt3_y, int iNet, String sSelection)

void insertArc3Point(Point pnt1, Point pnt2, Point pnt3, int iNet, String sSelection)

void insertArcCenterStart(double pntCenter_x, double pntCenter_y, double pntFrom_x, double pntFrom_y, double pntTo_x, double pntTo_y, String sDirection)

void insertArcCenterStart(Point pntCenter, Point pntFrom, Point pntTo, String sDirection)

void insertArcCenterStart(double pntCenter_x, double pntCenter_y, double pntFrom_x, double pntFrom_y, double pntTo_x, double pntTo_y, String sDirection, int iNet, String sSelection)

void insertArcCenterStart(Point pntCenter, Point pntFrom, Point pntTo, String sDirection, int iNet, String sSelection)

boolean insertArcConcentric(boolean bSelection, ObjectList oArcs)

void insertBreak(Point line_fp, Point line_tp)

void insertBreak(double line_fx, double line_fy, double line_tx, double line_ty)

void insertBreak(Line line)

void insertContourText(double rect_xmin, double rect_ymin, double rect_xmax, double rect_ymax, String sText, String sFontName, int iFontStyle, String sMirror, boolean bReverse, boolean bAllowDistortion, String sSelection)

void insertContourText(Rectangle rect, String sText, String sFontName, int iFontStyle, String sMirror, boolean bReverse, boolean bAllowDistortion, String sSelection)

void insertCopper(int number, String attach, String material, double thickness, String reference, double tolerance, String supplier)

void insertCore(int layNum, boolean matTop, boolean matBot, String material, String topMaterial, String botMaterial, double thickness, double topThickness, double botThickness, String reference, double tolerance, double erConstant, String supplier, ObjectList attrNames, Object[] attrValues, boolean revInsert)

void insertCore(int layNum, boolean matTop, boolean matBot, String material, String topMaterial, String botMaterial, double thickness, double topThickness, double botThickness, String reference, double tolerance, double erConstant, String supplier, ObjectList attrNames, Object[] attrValues)

void insertCore(int layTop, int layBot, boolean matTop, boolean matBot, String material, String topMaterial, String botMaterial, double thickness, double topThickness, double botThickness, String reference, double tolerance, double erConstant, String supplier, ObjectList attrNames, Object[] attrValues, boolean revInsert)

void insertDraw(double line_fx, double line_fy, double line_tx, double line_ty)

int insertDraw(Line line)

int insertDraw(double line_fx, double line_fy, double line_tx, double line_ty, int iNet, String sSelection)

int insertDraw(Line line)

int insertDraw(double line_fx, double line_fy, double line_tx, double line_ty)

int insertDraw(Line line)

int insertFlash(double pt_x, double pt_y, int iNet, String sSelection)

int insertFlash(Point pt, int iNet, String sSelection)

int insertFlash(double pt_x, double pt_y)

int insertFlash(Point pt)

void insertFlashRepeat(double pt_x, double pt_y, int iNx, double dXstep, int iNy, double dYstep, String sSelection)

void insertFlashRepeat(Point pt, int iNx, double dXstep, int iNy, double dYstep, String sSelection)

void insertFlashRepeat(double pt_x, double pt_y, int iNx, double dXstep, int iNy, double dYstep)

void insertFlashRepeat(Point pt, int iNx, double dXstep, int iNy, double dYstep)

void insertFullArc3Point(double pnt1_x, double pnt1_y, double pnt2_x, double pnt2_y, double pnt3_x, double pnt3_y)

void insertFullArc3Point(Point pnt1, Point pnt2, Point pnt3)

void insertFullArc3Point(double pnt1_x, double pnt1_y, double pnt2_x, double pnt2_y, double pnt3_x, double pnt3_y, int iNet, String sSelection)

void insertFullArc3Point(Point pnt1, Point pnt2, Point pnt3, int iNet, String sSelection)

void insertFullArcCenterRadius(double pntCenter_x, double pntCenter_y, double dRadius)

void insertFullArcCenterRadius(Point pntCenter, double dRadius, String sDirection)

void insertFullArcCenterRadius(double pntCenter_x, double pntCenter_y, double dRadius, String sDirection)

void insertFullArcCenterRadius(Point pntCenter, double dRadius, String sDirection, int iNet, String sSelection)

void insertFullArcCenterRadius(Point pntCenter, double dRadius, String sDirection)

boolean insertParallel(boolean bSelection, ObjectList oLines)
void insertPolydrawRect (double rect_xmin, double rect_ymin, double rect_xmax, double rect_ymax, boolean bSel)
 • void insertPolydrawRect (Rectangle rect, boolean bSel)
 • void insertPolydrawRect (double rect_xmin, double rect_ymin, double rect_xmax, double rect_ymax)
 • void insertPolydrawRect (Rectangle rect)
 • void insertPolydrawRect (double drawRectangle_xmin, double drawRectangle_ymin, double drawRectangle_xmax, double drawRectangle_ymax, boolean bRectCW, boolean bSel)
 • void insertPolydrawRect (Rectangle drawRectangle, boolean bRectCW, boolean bSel)
 • void insertPolygon (boolean bSelection, ObjectList polygon)
 • void insertPrePreg (int topLayer, int bottomLayer, String sPosition, String material, double thickness, String reference, double tolerance, double erConstant, String supplier, ObjectList attrNames, Object[] attrValues)
 • void insertTab (double p_x, double p_y, double dis, String pat)
 • void insertTab (Point p, double dis, String pat)
 • void insertVectorText (double pt_x, double pt_y, String sText, String sFont, double dWidth, double dSpacing, String sMirror, double dRotation, double dScale)
 • void insertVectorText (Point pt, String sText, String sFont, double dWidth, double dSpacing, String sMirror, double dRotation, double dScale)
 • void insertVectorText (double pt_x, double pt_y, String sText, String sFont, double dWidth, double dSpacing, String sMirror, double dRotation, double dScaleX, double dScaleY)
 • void insertVectorText (Point pt, String sText, String sFont, double dWidth, double dSpacing, String sMirror, double dRotation, double dScaleX, double dScaleY)
 • void intersectDraws (double pt_x, double pt_y)
 • void intersectDraws (Point pt)
 • boolean isDirectory (ObjectList fileInfo)
 • boolean isEqual (Object oParam1, Object oParam2)
 • boolean isFile (ObjectList fileInfo)
 • boolean isHidden (ObjectList fileInfo)
 • boolean isLayerInPlane (int iPlaneNumber)
 • void job_save_shm_and_release (String sShmName)
 • int jobApeMaxNumber ()
 • String jobATEMachine ()
 • void jobAttribute (String name, String value)
 • String jobAttribute (String name)
 • String jobAttribute ()
 • void jobCopperCount (boolean bUseMask, boolean bConfirmMaskUsage)
 • void jobCopperCount ()
 • void jobCustomer (String sCustomer)
 • String jobCustomer ()
 • void jobDRCParameters (String sDrc)
 • String jobDRCParameters ()
 • Rectangle jobEnclosingBox ()
 • void jobExtension (String sExtension)
 • void jobFixture (String sFixture)
 • String jobFixture ()
 • boolean jobHasPattern (boolean bUsed)
 • void jobInfo (String[] sInfo)
 • void jobInfo (String sInfo)
 • String jobInfo ()
 • void jobLayMask (String sLayMask)
 • String jobLayMask ()
 • int jobMaxNetnumer ()
 • void jobName (String sName)
 • String jobName ()
 • boolean jobNetlist ()
 • void jobNumApes ()
 • int jobNumBothExtras ()
 • int jobNumBothExtras (String subClass)
 • int jobNumBottomExtras ()
 • int jobNumBottomExtras (String subClass)
int jobNumCores ()
int jobNumDrills ()
int jobNumDrills (String subclass)
int jobNumExtras ()
int jobNumExtras (String subclass)
int jobNumLayers ()
int jobNumNoneExtras ()
int jobNumNoneExtras (String subclass)
int jobNumPrepregs (int start)
int jobNumPrepregs ()
int jobNumSignals ()
int jobNumSignals (String subclass)
int jobNumTopExtras ()
int jobNumTopExtras (String subclass)
void jobPath (String sPath)
String jobPath ()
void jobRevision (String sRevision)
String jobRevision ()
int jobSelectCount (String sOption)
int jobSelectCount ()
boolean jobSelection ()
Rectangle jobSelectionEnclosingBox ()
void jobSize (double pntSize_x, double pntSize_y)
void jobSize (Point pntSize)
void jobSize (String sUnit, double pntSize_x, double pntSize_y)
void jobSize (String sUnit, Point pntSize)
Point jobSize ()
void jobSpec (String sSpec)
String jobSpec ()
void jobUserData (String sUserData)
String jobUserData ()
void lajCleanLegendLayer (boolean DoMask, double MaskClearance, boolean DoCu, double CuClearance, boolean DoCuPads, double CuPadClearance, boolean bDoCuFOM, double iCuFOMClearance, boolean bDoCuPadsFOM, double iCuPadsFOMClearance, boolean doPlatedDrills, double platedDrillClearance, boolean doUnplatedDrills, double UnplatedDrillClearance, boolean DoSmallDraws, double MinDrawSize)
void lajDefineWord ()
void lajDeselectAllWords ()
void lajDragWord (double pt_x, double pt_y, double radius, double offset_x, double offset_y, double limit, boolean enforcelimit)
void lajDragWord (Point pt, double radius, Point offset, double limit, boolean enforcelimit)
void lajLegendDRC (boolean bDoLineWidth, double dMinLineWidth, boolean bDoMask, double dMaskClearance, boolean bDoCu, double dCuClearance, boolean bDoCuPads, double dCuPadClearance, boolean bDoCuFOM, double dCuFOMClearance, boolean bDoCuPadsFOM, double dCuPadsFOMClearance, boolean doPlatedDrills, double platedDrillClearance, boolean doUnplatedDrills, double UnplatedDrillClearance, boolean DoSmallDraws, double MinDrawSize)
void lajLegendTextToWords (double dMaxSize, int iMaxSpacing)
void lajMoveWord (String value, double dx, double dy, double limit)
void lajMoveWord (String value, double dx, double dy)
void lajScaleWord (String value, double factor, double limit)
void lajScaleWord (String value, double factor)
void lajScaleWordOnPt (double pt_x, double pt_y, double radius, double scale, double limit, boolean enforcelimit)
void lajScaleWordOnPt (Point pt, double radius, double scale, double limit, boolean enforcelimit)
void lajSelectAllWords ()
void lajUndefineWord ()
void layActive (ObjectList layerID, boolean bActive)
boolean layActive (ObjectList layerID)
void layActive (boolean bActive)
boolean layActive ()
void layAlias (String sAlias)
 String layAlias ()
 int layApeCount ()
 void layAttach (String sAttach)
 String layAttach ()
 void layAttribute (String name, String value)
 String layAttribute (String name)
 String layAttribute ()
 void layClass (String sNewClass)
 String layClass ()
 void layCopperCount (boolean bUseMask, boolean bConfirmMaskUsage)
 void layCopperCount ()
 Rectangle layEnclosingBox ()
 void layerViewSplit (boolean on)
 int layExtractPlotStamps (String dstLayName, String sOptions, ObjectList sFilters)
 void layFrom (int layFrom)
 int layFrom ()
 boolean layHasPattern (boolean bUsed)
 ObjectList layID ()
 void layIndex (int iIndex)
 int layIndex ()
 void layInfo (String sText)
 String layInfo ()
 void layMaterial (String sMaterial)
 String layMaterial ()
 void layName (String sName)
 String layName ()
 void layNumber (int iNumber)
 int layNumber ()
 void layReadable (String sSide)
 String layReadable ()
 void layReverse (boolean bReverse)
 boolean layReverse ()
 boolean laySelection ()
 Rectangle laySelectionEnclosingBox ()
 void laySubClass (String sSubClass)
 String laySubClass ()
 void layThickness (double dThickness)
 double layThickness ()
 void layTo (int layTo)
 int layTo ()
 double layZPos ()
 void liftUpUpcbBlocks ()
 Line Line (double ptFromX, double ptFromY, double ptToX, double ptToY, String units)
 Line Line (double ptFromX, double ptFromY, double ptToX, double ptToY)
 Line Line (Point ptFrom, Point ptTo)
 ObjectList listFrames ()
 void loadApertures (String sDpfFile)
 void loadBuildup (String buildupSpec)
 void loadFrames (boolean bVerbose, boolean bLoadOnce)
 void loadFrames ()
 void loadSplitConfig (String sConfigName)
 void loadUFD (String sUFDName)
 void loadWorkspace (String sWorkspaceName)
 void loadWorkspace ()
 double maxInvalidArcsDeviation ()
 int measureFingers (String szOption)
 void measureLayers ()
 void measureObjects (double p1_x, double p1_y, double p2_x, double p2_y)
 void measureObjects (Point p1, Point p2)
void measurePoints (double pt_x, double pt_y)
void measurePoints (Point pt)
void measurePoints (double p1_x, double p1_y, double p2_x, double p2_y)
void measurePoints (Point p1, Point p2)
void mergeContours ()
void mergeContoursSingle ()
void mergeContoursSingleAdd ()
void mergeLayers (String posNegAlt, boolean delLay)
void mirror (String axis, boolean bUseCenter, boolean bOnRefPoints)
void models (String sModelShape, double dTolerance)
void models (String sModelShape)
boolean modelsCreateComplex ()
boolean modelsCreateStandard (double dTolerance)
Rectangle modelsDefineSelections ()
int modelsReplace (double pntTolerance_x, double pntTolerance_y)
int modelsReplace (Point pntTolerance)
int modelsSelect (double pntTolerance_x, double pntTolerance_y)
int modelsSelect (Point pntTolerance)
void modifyCore (int iTopLay, String sAtt, int iNewTopLay, int iNewBotLay, String sNewAtt, double dThickness, String sMaterial, String sInfo)
void modifyDrill (String sName, String sAlias, String sClass, String sSubClass, int iFrom, int iTo, double dThickness)
void modifyExtra (String sName, String sAlias, String sClass, String sSubClass, String sAttach, int iNumber, boolean bReverse, String sMaterial)
void modifyFeedback (String sName, String sAlias, String sClass, String sSubClass, String sAttach)
void modifyLayer (String sName, String sAlias, String sClass, String sSubClass, int iNumber, boolean bReverse, double dZPosition, String sReadable, String sMaterial, double dThickness)
void modifyPrePreg (int iTopLay, int iIndex, int iNewTopLay, int iNewBotLay, iNewIndex, double dThickness, String sMaterial, String sInfo)
void move (double pt_x, double pt_y, boolean bOnRefPoints)
void move (Point pt, boolean bOnRefPoints)
void netlistBuild (String target)
void netlistClear ()
void netlistReference (String target)
void newJob (String jobPath, String jobName)
void notImplemented (String sFuncName)
void objAttribute (String name, String value)
String objAttribute (String name)
String objAttribute ()
Point objCenterPoint ()
double objClearance ()
Rectangle objEnclosingBox ()
Point objFlash ()
Point objFromPoint ()
String objInfo ()
int objNet ()
Point objPoint ()
double objRing ()
void objSelect (String sel)
boolean objSelect ()
String objSense ()
String objShape ()
void objString (String vtxString)
String objString ()
Point objToPoint ()
String objType ()
void offset (double offset_x, double offset_y)
void offset (Point offset)
Point offset ()
void offsetX (double offsetX)
void offsetY (double offsetY)
void openAboutUcamco ()
void openAboutUcamX ()
void openAdvantools ()
void openAMLJobManager ()
void openAnamorphicScale ()
void openApeCreator ()
void openApeEditor ()
void openApertureAttributes ()
void openApertureManager ()
void openAttributeEditor ()
void openAttributeManager ()
void openAutoDrill ()
void openAutoDrillEditor ()
void openAutoFixture ()
void openBarcode ()
void openBarcode128 ()
void openBoardAnalyzer ()
void openBoardSnapshot ()
void openCalculatorSetup ()
void openCamtek (String sMachineCfg)
void openCFMEEOutput ()
void openCheckList ()
void openCheckListDefineChecklist ()
void openCheckListDefineSteps ()
void openClipping ()
void openColor ()
void openConnect ()
void openContourHandling ()
void openConvertAttributes ()
void openCopperBalance ()
void openCopperRepair ()
void openCoverlayOptimizer ()
void openCU9000Dialog ()
void openDatums ()
void openDistort ()
void openDraw (double pt_x, double pt_y, double dis)
void openDraw (Point pt, double dis)
void openDrawSlots ()
void openDRC ()
void openDrillInfo ()
void openDrillMap ()
void openDrillOptimizer ()
void openDrillRoutSetups ()
void openDrillTolerance ()
void openDrillToolManager ()
void openDsAoi ()
void openDsAoiAdvanced ()
void openDSAOIialog ()
void openDsAoiPreview ()
void openDsAoiQueue ()
void openEditingToolbox ()
void openEditVectorText (double pickPoint_x, double pickPoint_y)
void openEditVectorText (Point pickPoint)
void openErrors ()
void openEtchCompensation ()
void openExpand ()
void openExternalLinkManager ()
void openFiducials ()
void openFillAngledPattern ()
void openFillPattern ()
void openFillVector ()
void openFlashMaker ()
void openFlexManager ()
void openFlipJob ()
void openFrame (String sFrameName)
void openGridParameters ()
void openHelp ()
void openHelpOnHelp ()
void openHelpOnHypertool ()
void openHelpOnResources ()
void openHelpOnVersion ()
void openHiPot ()
void openImageCompare ()
void openImpedanceControl ()
void openImportPC356 ()
void openImportMET ()
void openImportODBxx ()
void openImportWF ()
void openInsertContourText ()
void openInsertVectorText ()
void openJob (String jobName)
void openJob_shm (String sShmName)
void openJobCreate ()
void openJobDefinition ()
void openJobEdit ()
void openJobEditor ()
void openJobEditorOptions ()
void openJobLoad ()
void openJobMerge ()
void openJobPlaneSetup ()
void openJobPrint ()
void openJobView ()
void openLayerEdit ()
void openLegendOptimizer ()
void openLicenseHelp ()
void openLoadCheckList ()
void openMagnifier ()
void openMarkupAssistant ()
void openMessages ()
void openMLIOutput ()
void openModels ()
void openNetCompare ()
void openNetfixSetup ()
void openNonFunctionalPad ()
void openNumbers ()
void openObjectAttributes ()
void openObjectCompare ()
void openOutputAccumatch ()
void openOutputAOI ()
void openOutputCAD ()
void openOutputCamtek ()
void openOutputDrillRout (String sDrillMachine)
void openOutputDsDi ()
void openOutputDsDiPreview ()
void openOutputDsDiQueue ()
void openOutputNetlist ()
void openOutputOrbot ()
void openOutputSapphire ()
void openOutputScoring ()
void openOutputSmartArgos ()
void openOutputTrackscan ()
void openOutputUxpAutomanager ()
void optimizeMaskLayer (double dMinRing, double dMaxRing, double dMaskToCopper, double dMaskToMask, double dBigRing)

- String osChDir ()
- String osChDir (String sDir)
- int osCopy (String sSrcName, String sDstName)
- String osCreateTmpDir (String sBasePath)
- String osCreateTmpDir ()
- int osDelete (String sFileName)
- ObjectList osFileInfo (String sPath)
- ObjectList osGetFileList (String sDir, String sFileMask, boolean bRecurse, boolean bFullPath, boolean bWithDirs)
- ObjectList osGetFileList (String sDir, String sFileMask, boolean bRecurse, boolean bFullPath)
- ObjectList osGetFileList (String sDir, String sFileMask, boolean bRecurse)
- ObjectList osGetFileList (String sDir, boolean bRecurse, boolean bFullPath, boolean bWithDirs)
- ObjectList osGetFileList (String sDir)
- int osMarkAsTmp (String sName)
- int osMkDir (String sDirName)
- int osMove (String sSrcName, String sDstName)
- void osRmDir (String sDirName)
- void osRmTree (String sDirName)
- int osUnTgz (String sTgzArchive, String sDstDir)
- int osUnZip (String sZipArchive, String sDstDir)
- void outAtgFixture (String key, String sTool, String iRes, int iSession)
- void output274x (String sRes)
- void outputAft (String res)
- void outputAoi (boolean bCadData, boolean bReference)
- void outputAtf ()
- ObjectList outputAutoDrill (String sDrjFile)
- void outputCFMEE (String outputPath, boolean reverse, double marginx, double marginy, boolean distort, double distortx, double distorty, double resizex, double resizey, boolean deleteOutside)
- void outputCli ()
- void outputColorPDF (String sPdfFullPath)
- void outputDp40 (double pt_x, double pt_y, boolean bPositive, boolean bMirrorx, boolean bMirrory, double dLaserPower, int iPolygonSpeed, int iPcbFormat, String unit)
- void outputDp40 (Point pt, boolean bPositive, boolean bMirrorx, boolean bMirrory, double dLaserPower, int iPolygonSpeed, int iPcbFormat, String unit)
- void outputDxf (String unit, int iConturize, int iKeepTXT, double dExpandArcs, int iCenterLine, int iAllInOne)
- void outputDxfV6 (String unit)
- void outputEle (String sRes, ObjectList par)
- void outputEtec (String sResistOuter, String sResistInner, double mediaX, double mediaY, int iAlignType, int iLevelType, int iCycles, String sDate, String sTime, boolean bAuto, double dScaleX, double dScaleY, double dScaleOriX, double dScaleOriY, String sMDFfile, String sResource)
- void outputExt (String lan, String too, String res, ObjectList resdb, String inc1, String inc2, int session, Object[] pre, Object[] pos, Object notUsed)
- void outputExt (String lan, String too, String res, ObjectList resdb, String inc1, String inc2, int session, Object[] pre, Object[] pos)
- void outputHimt (double datum_x, double datum_y, double offset_x, double offset_y, String mirror, String rotation)
- void outputHimt (Point datum, Point offset, String mirror, String rotation)
- void outputLpc2581 ()
- void outputLpcUfd (String key, String res, String version)
- void outputLpg (int iPpi, int iChoke, double offset_x, double offset_y)
- void outputLpg (int iPpi, int iChoke, Point offset)
- int outputManiaSapphire (String sOutputPath, String sDescription, String sGeometryfile, boolean bStatistics, boolean bDrill)
- void outputMda (String sPath, ObjectList par, Object[] subpar, int iApr, int iSubfig, int iRenum)
- void outputNec (String too)
- void outputOdbxx (String res)
void outputOdbxxv7 (String res)

void outputOif (String oifVersion, int byJob, int pan, int fillin)

boolean outputOrbot ()

void outputPdf ()

void outputProbe (String sLang, int iSession, int iAccuracy)

int outputRaid ()

void outputRpd (int iPpi, double datum_x, double datum_y, double offset_x, double offset_y, String sMirror, String sRotation)

void outputRpd (int iPpi, Point datum, Point offset, String sMirror, String sRotation)

boolean outputSchnid (int resolution, double maskRectangle_xmin, double maskRectangle_xmax, int maskRotation, String maskMirror, String maskPolarity, int equipmentRotation, String equipmentMirror, double offsetX, double offsetY, ObjectList fiducials, String imagePath, String configPath, String batchFile)

boolean outputSchnid (int resolution, Rectangle maskRectangle, int maskRotation, String maskMirror, String maskPolarity, int equipmentRotation, String equipmentMirror, double offsetX, double offsetY, ObjectList fiducials, String imagePath, String configPath, String batchFile)

void outputS13 (String sResources, String sKey)

void outputSprint (String sOutputFolder, boolean bStandardMark, String sCopperName, String sRefName, String sAttributeZero, int iZeroPointNumber, String sAttributeCamera, int iCameraNumber, int iRotation0, int iRotation90, int iRotation180, String sText1, String sText2, String sText3, String sCleanOption)

void outputSys ()

void outputTiff (String sPath, String sExt, String sOptions, int iResolution)

int outputTs3 (boolean bDrilledBoards, double dSpace)

void outputWf2 (ObjectList par)

void outputXdpf (String sPath)

void outputYsphotech (boolean imagecomp, String outputPath, String reverse, double marginx, double marginy, boolean mirrorx, boolean mirrory, double rotate, double distortx, double distorty, double resize, boolean keepArrays, boolean deleteOutside, boolean autoDetected, String layername)

void outputYsphotech (String outputPath, String reverse, double marginx, double marginy, boolean mirrorx, boolean mirrory, double rotate, double distortx, double distorty, double resize, boolean keepArrays, boolean deleteOutside, boolean autoDetected, String layername)

void pajPlaneAdjust (double dPlatedClearance, double dUnplatedClearance, double dRingSize, double dRingClearance, double dLineWidth, double dCuClearance, boolean bDoCut, double dOutlineClearance)

void pajPlaneAdjust (double dPlatedClearance, double dUnplatedClearance, double dRingSize, double dRingClearance, double dLineWidth, double dCuClearance, boolean bDoCut, double dOutlineClearance, boolean bOutputAsContour, boolean bSaveBackup, boolean bErrorPopups)

void pajPlaneAdjust (double dPlatedClearance, double dUnplatedClearance, double dRingSize, double dRingClearance, double dLineWidth, double dCuClearance, boolean bDoCut, double dOutlineClearance, boolean bOutputAsContour, boolean bSaveBackup)

void panelStepRepeat (double pStart_x, double pStart_y, int iRepeatX, int iRepeatY, double dStepX, double dStepY, String sFlashPoint)

void panelStepRepeat (Point pStart, int iRepeatX, int iRepeatY, double dStepX, double dStepY, String sFlashPoint)

void panelStepRepeatCenter (double pStart_x, double pStart_y, int iRepeatX, int iRepeatY, double dStepX, double dStepY, String sFlashPoint)

void panelStepRepeatCenter (Point pStart, int iRepeatX, int iRepeatY, double dStepX, double dStepY)

void panelStepRepeatJobZero (double pStart_x, double pStart_y, int iRepeatX, int iRepeatY, double dStepX, double dStepY)

void panelStepRepeatJobZero (Point pStart, int iRepeatX, int iRepeatY, double dStepX, double dStepY)

void panelStepRepeatMiddle (double pStart_x, double pStart_y, int iRepeatX, int iRepeatY, double dStepX, double dStepY)

void panelStepRepeatMiddle (Point pStart, int iRepeatX, int iRepeatY, double dStepX, double dStepY)

int panelStepRepeatValidate ()

void pasteFromClipboard ()

String peGetInputFile ()

boolean peGetInputJobBooleanProperty (String name)

double peGetInputJobDoubleProperty (String name)

int peGetInputJobIntegerProperty (String name)

String peGetInputJobProperty (String name)

String peGetJobList ()
int peGetOptionalQuantity ()
• boolean peGetPanelJobBooleanProperty (String name)
• double peGetPanelJobDoubleProperty (String name)
• int peGetPanelJobIntegerProperty (String name)
• String peGetPanelJobProperty (String name)
• int peGetPCBQuantity ()
• boolean peGetSingleOptimization ()
• boolean peGetSolutionBooleanProperty (String name)
• double peGetSolutionDoubleProperty (String name)
• int peGetSolutionIntegerProperty (String name)
• String peGetSolutionProperty (String name)
• boolean peGetUseFrameSet ()
• void peSetInputFile (String fileName)
• void peSetInputJobProperty (String name, boolean value)
• void peSetInputJobProperty (String name, double value)
• void peSetInputJobProperty (String name, int value)
• void peSetInputJobProperty (String name, String value)
• void peSetOptionalQuantity (int quantity)
• void peSetPanelJobProperty (String name, boolean value)
• void peSetPanelJobProperty (String name, double value)
• void peSetPanelJobProperty (String name, int value)
• void peSetPanelJobProperty (String name, String value)
• void peSetSingleOptimization (boolean set)
• void peSetSolutionProperty (String name, boolean value)
• void peSetSolutionProperty (String name, double value)
• void peSetSolutionProperty (String name, int value)
• void peSetSolutionProperty (String name, String value)
• void peSetUseFrameSet (boolean set)
• void pickAperture (double pt_x, double pt_y, double radius)
• void pickAperture (Point pt, double radius)
• Point pickPoint (String sLabel)
• void plotAddLayerToMerge (String sJobName, String sPath)
• void plotAddLayerToMerge ()
• boolean plotLayer (String sPath, int iFillPercentage, boolean bSeparator, boolean bClean)
• boolean plotLayer (int iFillPercentage, boolean bSeparator, boolean bClean)
• boolean plotMergedLayers (int iFillPercentage, boolean bSeparator, boolean bClean)
• void plotResetParams ()
• void plotSetAttribute (ObjectList oLayID, String sName, String sValue)
• void plotSetAttribute (String sName, String sValue)
• void plotSetAttribute (String sName)
• void plotSetParam (ObjectList oLayID, String sKey, String sName, double dValue)
• void plotSetParam (String sKey, String sName, double dValue)
• void plotSetParam (ObjectList oLayID, String sKey, boolean bValue)
• void plotSetParam (String sKey, boolean bValue)
• void plotSetParam (ObjectList oLayID, String sKey, int iValue)
• void plotSetParam (String sKey, int iValue)
• void plotSetParam (ObjectList oLayID, String sKey, double dValue)
• void plotSetParam (String sKey, double dValue)
• void plotSetParam (ObjectList oLayID, String sKey, String sValue)
• void plotSetParam (String sKey, String sValue)
• void plotSetRipHost (String sRIP)
• void plotStartNew ()
• Point Point (Point point)
• Point Point (double x, double y, String units)
• Point Point (double x, double y)
• void point1 (double point1_x, double point1_y)
• void point1 (Point point1)
• Point point1 ()
• void point1Active (boolean bActivate)
• boolean point1Active ()
• void point1X (double pt1X)
void point1Y (double pt1Y)
void point2 (double point2_x, double point2_y)
void point2 (Point point2)
Point point2 ()
void point2Active (boolean bActivate)
boolean point2Active ()
void point2X (double pt2X)
void point2Y (double pt2Y)
void printListRefPoints (boolean bOnAllActiveLay)
void printListRefPoints ()
boolean promptBoolean (String optName, boolean def)
double promptDouble (String doubleName, double def)
void promptEnd ()
String promptFileName (String strLabel, String def)
int promptInteger (String intName, int def)
void promptLabel (String labelText)
Line promptLine (String lineName, double fromX, double fromY, double toX, double toY)
Line promptLine (String lineName, Line defLine)
String promptOption (String optName, ObjectList options, String def)
Point promptPoint (String pointName, double ptX, double ptY)
Point promptPoint (String pointName, Point point)
Rectangle promptRectangle (String rectangleName, double xmin, double xmax, double ymin, double ymax)
Rectangle promptRectangle (String rectangleName, Rectangle rectangle)
void promptStart (String sSetName, String sTitle)
void promptStart (String sSetName)
void promptStart ()
String promptString (String strName, String def)
double promptUnit (String unitName, double def, String units)
void qmerge (String sOptions)
void quitBlockEdit (boolean bSave, boolean bKeepLink)
void quitBlockEdit (boolean bSave)
void quitBlockMultiEdit (boolean bSave, boolean bKeepLink)
void quitBlockMultiEdit (boolean bSave)
void quitComplexEdit (boolean bSave)
void quitConfirm ()
void readAmli (String sPath)
void recognizeContours (String sConName)
Rectangle Rectangle (Rectangle rect)
Rectangle Rectangle (double xmin, double ymin, double xmax, double ymax, String units)
Rectangle Rectangle (double xmin, double ymin, double xmax, double ymax)
Rectangle Rectangle (Point ptPoint1, Point ptPoint2)
void redo ()
void registerJobOnPoints ()
void registerLayers ()
void registerOnGrid (double GridStep_x, double GridStep_y, double GridOri_x, double GridOri_y, double dXRadius, double dYRadius)
void registerOnGrid (Point GridStep, Point GridOri, double dXRadius, double dYRadius)
void registerOnPads (double dRadius, boolean bOnFlashPoint)
void removeApeAttr ()
void removeJobAttr ()
void removeLayerAttr ()
void removeNetAttr (int iNetNumber, String sAttrName, String sAttrValue)
void removeNetAttr (int iNetNumber, String sAttrName)
void removeNetAttr (String sAttrName, String sNetName)
void removeNetAttr (String sAttrName)
void removeObjAttr ()
void removeObjectAttribute (String sAttrName, String sAttrValue)
void removeObjectAttribute (String sAttrName)
void removeYsphotechPlotstamp (int plotstampID)
void replaceApeByCurrent ()
void replaceApertures()
void replaceBitmapByContours()
void replaceDrawsWithArcs(double tolerance)
void replaceInnersByOuters()
void replaceZeroLengthDraws(double dMaxLength, boolean bFunctional, boolean bNonFunctional)
void reproducePanel(String report)
void reset()
void resetCFMEE()
void resetCores(int iTop, String sAttach)
void resetCores()
void resetWorkspace()
void resetYsphotech()
void restoreArcs(boolean bPreferFullArc)
void restoreContours(boolean bPreferFullArc)
void returnVariables(ObjectList returnVariables)
void reverse()
void reverseLayer()
void reverseLayers()
void rotate(double angle, boolean bUseCenter, boolean bOnRefPoints)
void roundDraw(double pt_x, double pt_y, double dis)
void roundDraw(Point pt, double dis)
void routStatistics(String doOption)
void routStatistics()
void runDRC(String sCfgFile, boolean bBuildNetlist, String sUseNetlist, boolean bSelErrors)
String runFile(String sScriptPath, ObjectList argv)
String runFile(String sScriptPath)
String runScript(String sScript, ObjectList argv)
String runScript(String sScript)
ObjectList runScriptWithReturn(String sScript, Object[] argv)
ObjectList runScriptWithReturn(String sScript)
void saveAmli(String sPath)
void saveBuildup(String sSpec, String sCustomer, String sDrcPar, String sCoreRef, String sPrePregMat, String sCopperMat, String sJobFlow, String sTechCheck, String sAttrSet, String sDatumList, ObjectList layList)
int saveJob()
int saveJobAs(String fullPath, String sVersion)
int saveJobAs(String fullPath)
void saveJobAsV3()
void saveJobAsV6()
void saveJobAsV9()
void saveLayer(String sClass, String sSubClass, int iLayIndex, String sFullPath)
void saveLayer(String layName, String fullPath)
void saveMessagesAs(String sFilePath)
void saveOrder()
void saveSplitConfig(String sConfigName)
void saveUFD(String sUFDName)
void saveWorkspace()
void saveWorkspace(String sWorkspaceName)
void saveWorkspaceAs(String sWorkspaceName)
void scale(double dScaleValue, boolean bUseCenter)
void scaleObjectOnAttribute(String sName, double dScaleFactor, double dMinClearance)
void screendump()
void secureEtchCompensation(double dPadSpread, double dSmdSpread, double dTrackSpread, double dAreaSpread, double dPadPadClearance, double dPadSmdClearance, double dPadTrackClearance, double dPadAreaClearance, double dSmdSmdClearance, double dSmdTrackClearance, double dSmdAreaClearance, double dTrackTrackClearance, double dTrackAreaClearance, double dAreaAreaClearance, String sContourMethod, boolean bProcessSameNetSpacing, boolean bBackupOriginalLayer, boolean bCheckMissingCopper, boolean bFastMode, int iShiftMode, double dMinCopper)
void secureEtchCompensation(double dPadSpread, double dSmdSpread, double dTrackSpread, double dAreaSpread, double dPadPadClearance, double dPadSmdClearance, double dPadTrackClearance, double dPadAreaClearance, double dSmdSmdClearance, double dSmdTrackClearance, double dSmdAreaClearance, double dTrackTrackClearance, double dTrackAreaClearance, double dAreaAreaClearance, String sContourMethod, boolean bProcessSameNetSpacing, boolean bBackupOriginalLayer, boolean bCheckMissingCopper, boolean bFastMode, int iShiftMode, double dMinCopper)
void secureEtchCompensation (double dPadSpread, double dSmdSpread, double dTrackSpread, double dAreaSpread, double dPadPadClearance, double dPadSmdClearance, double dPadTrackClearance, double dPadAreaClearance, double dSmdSmdClearance, double dSmdTrackClearance, double dSmdAreaClearance, double dTrackTrackClearance, double dTrackAreaClearance, double dAreaAreaClearance, String sContourMethod, boolean bProcessSameNetSpacing, boolean bBackupOriginalLayer, boolean bCheckMissingCopper, boolean bFastMode, int iShiftMode)

void secureEtchCompensationUndo ()

void selectAll ()

void selectAll (String selectMode)

void selectAllApertures ()

void selectAllContours (String selectMode, String conMode)

void selectAllContours (String selectMode, double xSize, double ySize, String conMode)

void selectAmbiguousContours (String selectMode)

void selectAperture (ObjectList apeIndexArray)

void selectAperture ()

void selectAperturesBiggerThan (String selectMode, double dx, double dy)

void selectAperturesSmallerThan (String selectMode, double dx, double dy)

void selectByApeAttributeNames (String selectMode, String[] sName)

void selectByApertureShape (String selectMode, String apertureShapes)

void selectByAttribute (String selectMode, String sName)

void selectByAttributeValue (String selectMode, String sName, String sValue)

void selectByObjectType (String selectMode, String objectTypes)

void selectChained (String selectMode, Point pt)

void selectChained (String selectMode, double pt_x, double pt_y)

void selectChained (String selectMode, Point pt, double dTolerance)

void selectChained (String selectMode, double pt_x, double pt_y, double dTolerance)

void selectChainedObjects (String selectMode, double pnt_x, double pnt_y, double pixelRadius, double dOffCenter, boolean bSameApe, boolean bSameOrientation)

void selectCurrentAperture (String selectMode)

void selectCurrentApertureDefinition (String selectMode)

void selectCurrentObject (String selectMode)

void selectDoubles (String selectMode, double tolerance)

void selectEmbedded (String selectMode, double tolerance)

void selectFlashesLongerThan (String selectMode, double rRefRatio)

int selectHornablePads (String selectMode, String apertureShapes)

boolean selectInvalidArcs ()

int selectInvalidArcs (String sSelectMode, double dDeviation, String sLimit)

void selectIsolatedFlashes (String selectMode)

void selectMesh (String selectMode)

int selectNetByClick (String selectMode, double pt_x, double pt_y)

int selectNetByClick (String selectMode, Point pt)

int selectNetByName (String selectMode, String sNetName)

void selectNetByNumber (String selectMode, int net, boolean bSelectShaved, boolean bSelectBroken)

void selectNetByNumber (String selectMode, int net)

void selectNetByTestpoints (String selectMode, int nbt)

void selectNetsWithoutPads (String selectMode)

String selectNonFunctionalPads ()

void selectObjectAttribute (String sAttrName, String sAttrValue)

void selectObjectAttribute (String sAttrName)
void selectObjectByAttribute (String sAttrName, String sAttrValue)
void selectObjectByAttribute (String sAttrName)
void selectObjectByAttributeName (String selectMode, String sName)
void selectObjectByAttributeValue (String selectMode, String sName, String sValue)
void selectObjectByShape (String selectMode, String apertureShapes)
void selectObjectByType (String selectMode, String objectTypes)
void selectOpenContours (String selectMode)
void selectOverlappingContours (String selectMode)
void selectOverlaps (String selectMode)
void selectPainted (String selectMode)
int selectPaintedAreas (boolean bUseLoops, boolean bExcludeChains)
int selectPaintedAreas ()
void selectPlotStamps (String selectMode)
void selectPolygon (boolean bInside, boolean bOutside, boolean bCrossing, String sShapes, String sObjects, String selectMode, ObjectList polygonPoints)
void selectReferenceLayer (String selectMode)
void selectReverse (String selectMode)
void selectSmallContours (String selectMode, double xSize, double ySize, String conMode)
void selectSmallSurface (String selectMode, double surface, String conMode)
void selectSmallTracks (String selectMode, String lenMode, String dstMode, double maxLength)
void selectTouchingObjects (String selectMode, double pnt_x, double pnt_y, double pixelRadius)
void selectTouchingObjects (String selectMode, Point pnt, double pixelRadius)
void selectWindow (String selectMode, double rect_xmin, double rect_ymin, double rect_xmax, double rect_ymax, String winopt, String sShapes, String sObjects)
void selectWindow (String selectMode, Rectangle rect, String winopt, String sShapes, String sObjects)
void selectZeroLengthDraws (double dMaxLength, boolean bFunctional, boolean bNonFunctional)
boolean setApe (int index)
void setApertureAttribute (String sAttributeName, String sAttributeValue)
void setAttributeOnObject (String attrName, String attrValue)
boolean setCurrentAperture (int iIndex)
void setInPlane (int newPlane, int iIndex)
void setInPlane (int newPlane, String layName)
void setInPlane (int newPlane, String layClass, String laySubclass, String attach, int index)
void setInPlane (int newPlane, String layClass, String laySubclass, String attach, int index, boolean activate)
void setInPlane (int newPlane, ObjectList layerID, boolean activate)
void setInPlaneByName (int newPlane, String layName, boolean activate)
void setLayerViewBottom (ObjectList nameArray)
void setLayerViewDrill (ObjectList nameArray)
void setLayerViewMain (ObjectList nameArray)
void setLayerViewTop (ObjectList nameArray)
void setMode (ObjectList oMode)
void setMode (String sParams)
void setMode (String sOption, String sUnit, String sSnapMode)
Ulayer setNextLayerToPlane1 ()
void setOrigin (double p_x, double p_y)
void setOrigin (Point p)
void setOrigin (double pt_x, double pt_y, boolean bOnRefPoints)
void setOrigin (Point pt, boolean bOnRefPoints)
void setOriginCenter (double p_x, double p_y, boolean useOutline)
void setOriginCenter (Point p, boolean useOutline)
void setOriginToCenter (boolean bUseOutline, boolean bOnRefPoints)
void setPlotParam (String sKey, int iValue)
void setPlotParam (String sKey, double dValue)
void setPlotParam (String sKey, String sValue)
void setResolution (int resolution)
void setSnap (String sMode)
void setSnapOnContour (boolean on)
void setUnit (String unit)
void setYsphotechAlignmentPointType (int region, int point, String type)
void setYsphotechPlotstamp (int plotstampID, double rec_xmin, double rec_ymin, double rec_xmax,
void setYsphotechPlotstamp (int plotstampID, Rectangle rec, String type)
void shavePads (double dPadTraCrl, double dPadPadCrl, int iClip, boolean bShavelInsideCom)
void shavePads (double dPadTraCrl, double dPadPadCrl, int iClip)
void shavePadsOnMaskLayer (double dPadToTrack, double dPadToPad)
void showBlockStructure ()
void showMeasureValues (double p1_x, double p1_y, double dx, double dy, double clr, double rng)
void showMeasureValues (Point p1, double dx, double dy, double clr, double rng)
void showNetlistProfile ()
void silkOptimize (int iReference, double dClearanceToReference, boolean bCompensateBumps, double dBumpClearance, int iMethod, double dMinimumDrawLength)
int smoothen (String mode, double dMaxDeviation)
int smoothen (String mode, double dMaxDeviation, int iMinReplacePoints)
void spawn_func (String sCommand)
int splitContour (double dOverlapX, double dOverlapY, double dMinX, double dMinY)
void splitContours ()
boolean stackupByGerAttr ()
void standardizeBoxes ()
void testVDPathfinder (int iStart, int iEnd)
void testVDPathfinder2 (double dStartX, double dStartY, double dEndX, double dEndY)
void toggleApertureSelections ()
void toggleSelections ()
void toggleViewInBlocks ()
void toggleViewMode ()
void toggleViewObjects ()
void toggleViewRefPoints ()
void toggleViewZero ()
void trimDraws (double p1_x, double p1_y, double p2_x, double p2_y)
void trimDraws (Point p1, Point p2)
void undo ()
void undoClear ()
void unload (String sClass, String sSubClass, int iLayIndex, boolean bSave)
void updateProbes ()
void updateTestPoints ()
void updateTestPointsAndProbes ()
void updateZPosition ()
void utestCheck3DProbeClearance (boolean bCheck3DProbeClearance, double dClearance)
void utestCreateEtmComponentLayers (boolean bCreateCompLay)
void utestDedicatedFixtures (boolean bDedicatedFixtures, boolean bFirstProbeNumber0, double dFontScale, int iShowProbeNumberEvery, boolean bShowConnectorNumberAlways, boolean bContinousNumbering, boolean bContinousNumberingOnBottom)
void utestDo ()
void utestFiducals (boolean bFiducals)
void utestFixtureSizeSplit (boolean bFixtureSizeSplit, int iSplitSet)
void utestGuidePlates (boolean bGuidePlates)
void utestKelvin4WireTest (boolean bKelvin4WireTest, boolean bUsedMidPoints, boolean bTestOnBlindHoles, boolean bTestOnlyThroughHoles, boolean bTestAllPads, double dMinDrillDia, double dMaxDrillDia, int iSearchDepthLimit)
void utestKelvin4WireTest (boolean bKelvin4WireTest, boolean bUsedMidPoints, boolean bTestOnBlindHoles, boolean bTestOnlyThroughHoles, double dMinDrillDia, double dMaxDrillDia, int iSearchDepthLimit)
void utestMachine (int iSession, String sMachName, String sAccesstype)
void utestMicroAdjustment (boolean bMicroAdjustment, int iNbrOfTestPoints, double dTestPointDiameter, double dTestPointShiftEdge, double dTestPointShiftValue, double dTestPointPitch, double dClearanceFactor, double dCenterDiameter)
void utestNetlist (boolean bNetlist, boolean bNetlistBuild, boolean bNetlistExpand)
void utestOutput (boolean bOutput, boolean bDrillFixture, String sDrillFixture, boolean bNetlist, String sNetlist, boolean bElectTest, boolean bPinInserter, boolean bRepairAid, String sRepairAid)
void utestProbeAssignment (boolean bProbeAssignment, boolean bStagger, String sStagptn, boolean bStagopttrian, boolean bStagoptlined, boolean bStagoptplained, double dPitch, double dTolerance, double dSetBack, boolean bReverse, boolean bAxis)
void utestProbeMapping (boolean bProbeMapping)
void utestTestpoints (boolean bTestPoints, int iLoop, boolean bUseMasks, boolean bProbeSwaping,
 boolean bHandlePaintedPads, boolean bCircuitryCheck, boolean bFilterCopperAreas, boolean
 bViaOfSMDs, boolean bDrillsWithoutPad)
void utestTestpointsBOT (boolean bPointsBot1, boolean bPointsBot2, boolean bPointsBot3, boolean
 bPointsBot4, boolean bPointsBot5, boolean bPointsBot6, boolean bPointsBot7)
void utestTestpointsTOP (boolean bPointsTop1, boolean bPointsTop2, boolean bPointsTop3, boolean
 bPointsTop4, boolean bPointsTop5, boolean bPointsTop6, boolean bPointsTop7)
void validateInvalidArcs ()
void viewAmbiguous ()
void viewGrid (boolean bVisible, double ptOrigin_x, double ptOrigin_y, double dXStep, double dYStep,
 boolean bCross)
void viewGrid (boolean bVisible, Point ptOrigin, double dXStep, double dYStep, boolean bCross)
void viewGrid (boolean bVisible, Point ptOrigin, Point ptStep, boolean bCross)
void viewGrid (boolean bVisible)
void viewGrid ()
void viewGuide ()
void viewHistory ()
void viewInBlocks (boolean trueFalse)
void viewMessages ()
void viewMode (String sMode)
void viewModeFilled ()
void viewModeOutline ()
void viewModeSkeleton ()
void viewNumbers ()
void viewObjects (boolean trueFalse)
void viewPan (double p1_x, double p1_y, double p2_x, double p2_y)
void viewPan (Point p1, Point p2)
void viewRefPoints (boolean trueFalse)
void viewRepaint ()
void viewWarning (String message)
void viewZero (boolean trueFalse)
void viewZoom (String sZoom)
void viewZoomIn ()
void viewZoomOut ()
void viewZoomSelections ()
void viewZoomTotal ()
void viewZoomWindow ()
void viewZoomWindow (double rect_xmin, double rect_ymin, double rect_xmax, double rect_ymax,
 boolean bScreenCenter)
void viewZoomWindow (Rectangle rect, boolean bScreenCenter)
void viewZoomWindow (double rect_xmin, double rect_ymin, double rect_xmax, double rect_ymax)
void viewZoomWindow (Rectangle rect)
void xmlAdd (String sDataName, String sElementName, String sContent, ObjectList attrArray)
void xmlAdd (String sDataName, String sElementName, String sContent)
void xmlAdd (String sElementName, String sContent)
void xmlAddData (String sParentDataName, String sDataName)
void xmlAddData (String sDataName)
void xmlCreateData (String sDataName)
void xmlDocument (String rootName)
void xmlSave (String sDestFilePath)
void YachiyoAOI_clearOutput (String name)
void YachiyoAOI_defineArea (intgrpIndex, int areaIndex, double pos_x, double pos_y)
void YachiyoAOI_defineArea (int grpIndex, int areaIndex, Point pos)
void YachiyoAOI_defineGroup (int index, double area_xmin, double area_ymin, double area_xmax,
 double area_ymax, String types)
void YachiyoAOI_defineGroup (int index, Rectangle area, String types)
void YachiyoAOI_defineMask (int grpIndex, int maskIndex, double area_xmin, double area_ymin, double
 area_xmax, double area_ymax, String type)
void YachiyoAOI_defineMask (int grpIndex, int maskIndex, Rectangle area, String type)
void YachiyoAOI_finish ()
boolean YachiyoAOI_generateCalibration (String name, double pos_x, double pos_y, double startRes, double endRes, double step, String options)
- boolean YachiyoAOI_generateCalibration (String name, Point pos, double startRes, double endRes, double step, String options)
- boolean YachiyoAOI_generateOutput (String name, String lens, String fixture, String options)
- String YachiyoAOI_getStrings (String kind)
- boolean YachiyoAOI_init (String iniFile)
- void YachiyoAOI_reset ()
- void YachiyoAOI_setRefPoint (int index, double pos_x, double pos_y)
- void YachiyoAOI_setRefPoint (int index, Point pos)

Variables

- int FILE_ATTRIBUTES = 2
- int FILE_MODIFICATION_DATE = 4
- int FILE_NAME = 5
- int FILE_PARENT = 1
- int FILE_SIZE = 3
- int FILE_TYPE = 0
- int LAYER_ACTIVITY = 5
- int LAYER_APERTURES = 6
- int LAYER_ATTACH = 3
- int LAYER_CLASS = 1
- int LAYER_INDEX = 4
- int LAYER_NAME = 0
- int LAYER_SUBCLASS = 2

Function Documentation

void abort (String sInfo)

Aborts script execution

Parameters:

sInfo Text with information about abort reason.

Exceptions:

AbortException

void activate (String layClass,
 String laySubclass,
 int layNum,
 boolean layAct)

Activate/Deactivate layer by class, subclass and index

Parameters:

layClass Class of layer(s) to be activated (layer, drill, extra, feedback or all)
laySubclass Subclass of layer(s) to be activated/deactivated
layNum Index within the specified copper layer class or subclass e.g. to activate the bottom copper layer of a 6 layer job:

activate("layer",null , 6, true);
activate("layer",null , 6, true);

The value 6 refers to the 6th layer or
activate("layer", "outer", 2, true);
activate("layer", "outer", 2, true);
The value 2 refers to the second layer of subclass "outer". Index within the extra layer class All "extra" layers attached to "top" are numbered from top to bottom, for "extra" layers attached to "bottom" the numbering continues from bottom to top. To activate the extra layer with index 4:
activate("extra", null, 4, true);
activate("extra", null, 4, true);
Index within the specified drill class or subclass Drill layers are numbered from left to right To activate the first plated drill layer of a job with 1 unplated and 2 plated layers activate("drill",null , 2, true);
activate("drill",null , 2, true);
The value 2 refers to the second drill layer or
activate("drill", "plated", 1, true);
activate("drill", "plated", 1, true);
The value 1 refers to the first plated drill layer Note: The extra.order ucam.db key can change the order of the extra layers. Scripts relying on the index of extra layers could fail to execute correctly on other systems.

layAct Set true to activate and false to deactivate layers

```java
void activate ( ObjectList layerID,
                boolean layAct)
```

Activate/Deactivate layer by layer ID

Parameters:
- `layerID` the layer ID describing the layer
- `layAct` Set true to activate and false to deactivate layers

See also:
- getLayerID(Ulayer)
- getLayerID(Ulayer, String)

```java
void activate ( String layClass,
                String laySubclass,
                boolean layAct)
```

Activate/Deactivate layers by subclass

Parameters:
- `layClass` Class of layer(s) to be activated (layer, drill, extra, feedback or all)
- `laySubclass` Subclass of layer(s) to be activated/deactivated
- `layAct` Set true to activate and false to deactivate layers

```java
void activateAllLayers ( )
```

VHS API Specification

March 2018
Page 33 of 393
activateAllLayers

```java
void activateBottomLayers ( boolean layAct )
```

Activate/deactivate the bottom layer in all level-1 subjobs.

Parameters:

`layAct` Set true to activate and false to deactivate layers

```java
void activateToggle ( )
```

This function can not be recorded Toggle activation of all layers

```java
void activateTopLayers ( boolean layAct )
```

Activate/deactivate the top layer in all level-1 subjobs.

Parameters:

`layAct` Set true to activate and false to deactivate layers

```java
void activityClean ( String sMode )
```

Cleans attributes uActivityZoom or uActivityPlane or uActivityActive or all according to given `sMode`.

Parameters:

`sMode` string "plane", "zoom", "activity" or "*" for all previous values.

```java
void activityClean ( )
```

Cleans all attributes uActivityZoom, uActivityPlane and uActivityActive

```java
void activityRestore ( String sMode )
```

Restores viewport stored in job attribute uActivityZoom or layer planes of all layers stored in layer attribute named uActivityPlane or layer activity stored in layer attribute named uActivityActive or all according to given `sMode`.

Parameters:

`sMode` string "plane", "zoom", "activity" or "*" for all previous values.

```java
void activityRestore ( )
```

Restores viewport stored in job attribute uActivityZoom, planes of all layers stored in layer attribute named uActivityPlane and layer activity stored in layer attribute named uActivityActive
void activityStore (String sMode)

Stores viewport in job attribute uActivityZoom or layer planes of all layers in layer attribute named uActivityPlane or layer activity in layer attribute named uActivityActive or all according to given sMode.

Parameters:

sMode string "plane", "zoom", "activity" or "*" for all previous values.

void activityStore ()

Stores current viewport in job attribute uActivityZoom, planes of all layers in layer attribute named uActivityPlane and layer activity in layer attribute named uActivityActive

void addBreak (Point line_fp, Point line_tp)

Add break to draws on given line.

Parameters:

line_fp (from point) the given line
line_tp (to point) the given line

void addBreak (double line_fx, double line_fy, double line_tx, double line_ty)

Add break to draws on given line.

Parameters:

line_fx (from X coordinate) the given line
line_fy (from Y coordinate) the given line
line_tx (to X coordinate) the given line
line_ty (to Y coordinate) the given line

void addBreak (Line line)

Add break to draws on given line.

Parameters:

line the given line

int addCFMEEAlignmentPoint (double point_x, point_y)
```java
double point_y

Add alignment point to CFMEE

Parameters:

point_x (X coordinate) the point of the alignment point
point_y (Y coordinate) the point of the alignment point

int addCFMEEAlignmentPoint ( Point point )

Add alignment point to CFMEE

Parameters:

point the point of the alignment point

void addDPF ( String dpf,
              String layName,
              String subClass,
              int layPos,
              String readable )

Add DPF Layer

Parameters:

dpf Path to dpf file
layName Name of layer
subClass Subclass of layer
layPos Position of layer
readable Readable side

void addDPFDump ( String dpf,
                  int layPos,
                  int drillTop,
                  int drillBot )

Add DPF Drill

Parameters:

dpf Path to a dpf file
layPos Position of the added layer. The value between 1 and a number of the drill layers inclusive.
drillTop Index of the top drilled layer
drillBot Index of the bottom drilled layer

void addDPFExtra ( String dpf,
                   String attach,      

```
boolean bNoChecks
)

Add DPF Extra

Parameters:

dpf Path to a dpf file
attach "top" or "bottom"
bNoChecks if true, disable overlap check

void addDPFExtra (String dpf,
 String attach
)

Add DPF Extra

Parameters:

dpf Path to a dpf file
attach "top" or "bottom"

void addDPFLayer (String dpf,
 int layPos
)

Add DPF Layer

Parameters:

dpf Path to a dpf file
layPos Position of the added layer. The value between 1 and a number of the signal layers inclusive.

int addETMComponentHiPot (int etmId,
 int primId,
 int NetPrim,
 int NetSecond,
 String TestVolt,
 String Duration,
 String LeakCurrent,
 String VoltType,
 String StartVolt,
 String VoltRise
)

Adds a HiPot component to the HiPot etm component and etm connect layers - searches coordinates of largest test point

Parameters:

etmId The unique etm id of the component
primId The primary ID for a primary group
NetPrim Primary net number
NetSecond Secondary net number
<table>
<thead>
<tr>
<th>TestVolt</th>
<th>Test parameter Test Voltage [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>Test parameter Duration [s]</td>
</tr>
<tr>
<td>LeakCurrent</td>
<td>Test parameter Test Leakage Current [mA]</td>
</tr>
<tr>
<td>VoltType</td>
<td>Test parameter Voltage Type - AC or DC</td>
</tr>
<tr>
<td>StartVolt</td>
<td>Test parameter Start Voltage [V]</td>
</tr>
<tr>
<td>VoltRise</td>
<td>Test parameter Voltage Rise [s]</td>
</tr>
</tbody>
</table>

Returns:

0: ok, 1: an error occurred

```c
int addETMComponentHiPot ( int etmId, int primId, double XStart, double YStart, String AccStart, double XEnd, double YEnd, String AccEnd, int NetPrim, int NetSecond, String TestVolt, String Duration, String LeakCurrent, String VoltType, String StartVolt, String VoltRise )
```

Adds a HiPot component to the HiPot etm component and etm connect layers

Parameters:

- **etmId** The unique etm id of the component
- **primId** The primary ID for a primary group
- **XStart** Start coordinate (primary net)
- **YStart** End coordinate (secondary net)
- **AccStart** Connect access for start coordinate (primary net): top or bottom
- **XEnd** Connect access for end coordinate (secondary net): top or bottom
- **YEnd**
- **NetPrim** Primary net number
- **NetSecond** Secondary net number
- **TestVolt** Test parameter Test Voltage [V]
- **Duration** Test parameter Duration [s]
- **LeakCurrent** Test parameter Test Leakage Current [mA]
- **VoltType** Test parameter Voltage Type - AC or DC
- **StartVolt** Test parameter Start Voltage [V]
- **VoltRise** Test parameter Voltage Rise [s]

Returns:

0: ok, 1: an error occurred
void addFault (String sType,
 double oRectangle_xmin,
 double oRectangle_ymin,
 double oRectangle_xmax,
 double oRectangle_ymax,
 String sInfo)
)

Add Rectangle as an user fault to current UFD

Parameters:
 sType fault type name
 oRectangle_xmin (left boundary of rectangle) fault Rectangle
 oRectangle_ymin (bottom boundary of rectangle) fault Rectangle
 oRectangle_xmax (right boundary of rectangle) fault Rectangle
 oRectangle_ymax (top boundary of rectangle) fault Rectangle
 sInfo fault info

void addFault (String sType,
 Rectangle oRectangle,
 String sInfo)
)

Add Rectangle as an user fault to current UFD

Parameters:
 sType fault type name
 oRectangle fault Rectangle
 sInfo fault info

void addFault (String sType,
 Line oLine,
 String sInfo)
)

Add Line as an user fault to current UFD

Parameters:
 sType fault type name
 oLine fault Line
 sInfo fault info

void addFault (String sType,
 double oPt_x,
 double oPt_y,
 String sInfo)
)

Add point as an user fault to current UFD
void addFault (String sType,
 Point oPt,
 String sInfo
)

Add point as an user fault to current UFD

Parameters:
 sType fault type name
 oPt_x (X coordinate) Point of the fault
 oPt_y (Y coordinate) Point of the fault
 sInfo fault info

void addHyperScriptMenuItem (String sScriptPath,
 String sMenuItemLabel
)

Adds menu item to Ucam->HyperScript

Parameters:
 sScriptPath full path to the script file
 sMenuItemLabel menu item label

void addMaskLayer (double dThicken)

Create New Soldermask layer

Parameters:
 dThicken - Pad Thicken

void addObjectAttribute (String sAttrName)

addObjectAttribute Sets the object attribute with the given name. Takes objects from active layers from current job by Ucam options. (e.g. all selected objects)

Parameters:
 sAttrName The object attribute name

void addObjectAttribute (String sAttrName,
 String sAttrValue
)
addObjectAttribute Sets the object attribute with the given name and value. Takes objects from active layers from current job by Ucam options. (e.g. all selected objects)

Parameters:
- sAttrName The object attribute name
- sAttrValue The object attribute value

```java
void addOptimizedMaskLayer ( double dMinRing,
    double dMaxRing,
    double dMaskToCopper,
    double dMaskToMask,
    double dBigRing
    )
```

Create New Optimize Soldermask layer

Parameters:
- dMinRing - Minimum Ring
- dMaxRing - Maximum Ring
- dMaskToCopper - Mask to Copper
- dMaskToMask - Mask to Mask
- dBigRing - Big Pad Ring

```java
void addRefPoint ( int iIndex,
    double pPnt_x,
    double pPnt_y,
    boolean bOnAllActiveLay
    )
```

 Adds a reference point to layer.

Parameters:
- iIndex The reference point number.
- pPnt_x (X coordinate) The point coordinates.
- pPnt_y (Y coordinate) The point coordinates.
- bOnAllActiveLay if true it work on all active layers, otherwise only on active loaded layer in plane 1

```java
void addRefPoint ( int iIndex,
    Point pPnt,
    boolean bOnAllActiveLay
    )
```

 Adds a reference point to layer.

Parameters:
- iIndex The reference point number.
- pPnt The point coordinates.
- bOnAllActiveLay if true it work on all active layers, otherwise only on active loaded layer in plane 1
void addShavedMaskLayer (double \textit{dThicken},
\hspace{5pt} double \textit{dPadToTrack},
\hspace{5pt} double \textit{dPadToPad})

Create New Soldermask layer and Shave Soldermask

Parameters:
\begin{itemize}
\item \textit{dThicken} - Pad Thicken
\item \textit{dPadToTrack} - Mask to Track
\item \textit{dPadToPad} - Mask To Pad
\end{itemize}

void addTeardrops (int \textit{iMode},
\hspace{5pt} double \textit{dRelDiam},
\hspace{5pt} double \textit{dRelDist},
\hspace{5pt} double \textit{dAbsDiam},
\hspace{5pt} double \textit{dAbsDist},
\hspace{5pt} double \textit{dMinClr},
\hspace{5pt} int \textit{iOnRect},
\hspace{5pt} int \textit{iOnHoles})

Makes teardrop shaped pads where a track enters a circle/rectangle pad.

Parameters:
\begin{itemize}
\item \textit{iMode} Defines how the teardrop is generated. 0 : using a circular flash. 1 : using draws. 2 : using arcs.
\item \textit{dRelDiam} The relative size of the circular aperture used to create the teardrop. This size is relative to the size of the connected pad in case of sub-lands, or relative to the diameter of the connecting draws/arcs.
\item \textit{dRelDist} The distance of the flash point of the subland relative to the size of the connected pad in sublandmode. This is the length of the bissection relative to the size of the connected pad in track or arc mode.
\item \textit{dAbsDiam} The size of the circular aperture used to create the teardrop.
\item \textit{dAbsDist} The distance of the flash point of the subland in sublandmode, the length on the bissection in track or arc mode.
\item \textit{dMinClr} The minimum clearance.
\item \textit{iOnRect} Generates teardrops on rectangles when 1.
\item \textit{iOnHoles} Generates teardrops only on pads with a drill hole present.
\end{itemize}
Parameters:

- **iMode**
 Defines how the teardrop is generated. 0 : using a circular flash. 1 : using draws. 2 : using arcs.

- **dRelDiam**
 The relative size of the circular aperture used to create the teardrop. This size is relative to the size of the connected pad in case of sub-lands, or relative to the diameter of the connecting draws/arcs.

- **dRelDist**
 The distance of the flash point of the subland relative to the size of the connected pad in sublandmode. This is the length of the bi-section relative to the size of the connected pad in track or arc mode.

- **dAbsDiam**
 The size of the circular aperture used to create the teardrop.

- **dAbsDist**
 The distance of the flash point of the subland in sublandmode, the length on the bissection in track or arc mode.

- **dMinClr**
 The minimum clearance.

- **iOnRect**
 Generates teardrops on rectangles when 1.

```java
int addYsphotechAlignmentPoint ( int region,
                               double point_x,
                               double point_y )
```

Add alignment point to Ysphotech

Parameters:

- **region** the region number (0 for global)
- **point_x** (X coordinate) the point of the alignment point
- **point_y** (Y coordinate) the point of the alignment point

```java
int addYsphotechAlignmentPoint ( int region,
                                  Point point )
```

Add alignment point to Ysphotech

Parameters:

- **region** the region number (0 for global)
- **point** the point of the alignment point

```java
void align_blocks ( double dTolerance,
                    boolean bOnAllLayers )
```

Performs automatic block align on this job.

Parameters:

- **dTolerance** required percentage of the overlap
- **bOnAllLayers** true means ignore layer activity This method is licensed.

```java
void AmliAddUser ( String sUser,
                   String sPassword )
```

VHS API Specification

March 2018

Page 43 of 393
Add user to the system

Parameters:
- \texttt{sUser} user name
- \texttt{sPassword} user's password
- \texttt{sAuthorityLevel} "admin", "operator" or "engineer"

Changes user's password.

Parameters:
- \texttt{sUser} user name
- \texttt{sPassword} user password
- \texttt{sNewPassword} user new password

Get user's authority level

Parameters:
- \texttt{sUser} user name
- \texttt{sPassword} user password

Delete user from the system

Parameters:
- \texttt{sUser} user name to be removed

Analyze external format of given file

Parameters:
- \texttt{sExtName} external file full path

Returns:
- language
void angle (double angle)

Set the Angle value

Parameters:

angle Value of the Angle

double angle ()

Gets the Angle number value

Returns:

Value of the Angle

void apeAnamorphicScale (double dDistanceX, double dDistanceY, boolean bProportional)

Anamorphic Scale - Scale X and/or Y size of the aperture of a layer. Only the pad sizes are affected. Anamorphic Scale works on active layer in the plane 1 and on selected objects in the layer.

Parameters:

dDistanceX - a multiplication value, X distance value, absolute
dDistanceY - a multiplication value, Y distance value, absolute
bProportional - if true, the scale will be proportional

void apeAnamorphicScale (double dScaleX, double dScaleY)

Anamorphic Scale - Scale X and/or Y size of the aperture of a layer. Only the pad sizes are affected. Anamorphic Scale works on active layer in the plane 1 and on selected objects in the layer.

Parameters:

dScaleX - a multiplication value, X scale value [%]
dScaleY - a multiplication value, Y scale value [%]

void apeAttribute (String name, String value)

Sets the given value to the given aperture attribute. If the attribute exists, its value is changed to the new value. Otherwise the attribute is created. If the value is null the attribute with the given name is removed.

Parameters:

name the aperture attribute name
String apeAttribute (String name)

Returns the value of the aperture attribute with given name.

Parameters:
 name the aperture attribute name

Returns:
 the value of the aperture attribute with given name or null if the attribute is not defined in the aperture.

String apeAttribute ()

Returns comma separated list of the all aperture attributes.

Example: "uPCB=cc_d01,num=1"

Returns:
 comma separated list of the all aperture attributes.

void apeCorners (String sCorners)

Sets the corner type of the current box aperture.

Parameters:
 sCorners String possible values "rounded", "straight", "cut" or "antique".

String apeCorners ()

Gets the corner type of the current box aperture.

Returns:
 "rounded", "straight", "cut" or "antique".

void apeCreateBox (int apeNum, double xsize, double ysize, String corners, double xcutoff, double ycutoff)

Create Box aperture

Parameters:
 apeNum Aperture Number
 xsize Box size in X
void apeCreateCircle (int apeNum,
 double dia)

Create Circle aperture

Parameters:
 apeNum Aperture Number
 dia Diameter

void apeCreateContour (int apeNum,
 double stroke)

Create Contour aperture on layer in plane 1

Parameters:
 apeNum Aperture Number
 stroke Stroke value

void apeCreateDonut (int apeNum,
 double outer,
 double inner,
 String kind)

Create Donut aperture

Parameters:
 apeNum Aperture Number
 outer Donut outer diameter
 inner Donut inner diameter
 kind Donut kind : rr=round/round, ss=square/square, sr=square/round

void apeCreateOblong (int apeNum,
 double xsize,
 double ysize)

Create Oblong aperture

Parameters:
 apeNum Aperture Number

ysize Box size in Y
corners Box corners types : "r" for rounded, "a" for antique, "c" for cut and "s" for straight
xcutoff Box corner cutoff value in X
ycutoff Box corner cutoff value in Y
VHS API Specification

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>void apeCreateOctagon (int apeNum, double size)</code></td>
<td>Create Octagon aperture</td>
<td><code>apeNum</code> Aperture Number, <code>size</code> Octagon size</td>
</tr>
<tr>
<td><code>void apeCreateRectangle (int apeNum, double xsize, double ysize)</code></td>
<td>Create Rectangle aperture</td>
<td><code>apeNum</code> Aperture Number, <code>xsize</code> Rectangle size in X, <code>ysize</code> Rectangle size in Y</td>
</tr>
<tr>
<td><code>void apeCreateText (int iApeNum, double dHeight, String sText, double dRotation)</code></td>
<td>Create Text aperture</td>
<td><code>iApeNum</code> Aperture Number, <code>dHeight</code> Text height, <code>sText</code> Text set to the aperture, <code>dRotation</code> The aperture rotation in degrees. Positive values are counterclockwise.</td>
</tr>
<tr>
<td><code>void apeCreateText (int iApeNum, double dHeight, String sText)</code></td>
<td>Create Text aperture</td>
<td><code>iApeNum</code> Aperture Number, <code>dHeight</code> Text height, <code>sText</code> Text set to the aperture</td>
</tr>
</tbody>
</table>
void apeCreateThermal (int apeNum,
double outer,
double inner,
double gap,
int numGap,
double angle,
String kind)

Create Thermal aperture

Parameters:

apeNum Aperture Number
outer Thermal outer diameter
inner Thermal inner diameter
gap Thermal gap distance
numGap Thermal number of gaps
angle Thermal angle
kind Thermal kind: "rr", "rs", "ss" or "sr"

Rectangle apeEnclosingBox ()

Gets the enclosed rectangle of all objects defined for this aperture.

Returns:
the enclosed rectangle of all objects defined for this aperture.

int apeExtlinkCheck ()

Check extlink on the current aperture and return a status

Returns:

a status:

0 - OK
1 - should not occur
2 - dpf file not found
3 - cannot load dpf file specified by extlink
4 - aperture size does not match the dpf file block size
5 - no external link on the aperture
6 - no time stamp available in the link
7 - memory allocation error
8 - path name cannot be expanded/shrunk
9 - buffer overrun when expanding/shrinking path name
10 - the file has changed while the definition within the Ucam does not
11 - license check failed
12 - too small buffer to return path name
13 - external link is pointing to itself
14 - time stamp available in the link is different (dat_equal)
15 - dpf available in the link is different (dat_equal)

String apeExtlinkPath ()
If the aperture has associated extlink, the pathname is returned

Returns:
external link Path, "" if there is no such link on the aperture

String apeExtlinkPathString ()

If the aperture has associated extlink, the pathname is returned

Returns:
external link Path, "" if there is no such link on the aperture

boolean apeExtlinkRelative ()

Returns information if path to external link is relative.

Returns:
true if path to external link is relative.

int apeExtlinkStatus ()

Take status extlink on the aperture

Returns:
a status:

- 0 - OK
- 1 - should not occur
- 2 - dpf file not found
- 3 - cannot load dpf file specified by extlink
- 4 - aperture size does not match the dpf file block size
- 5 - no external link on the aperture
- 6 - no time stamp available in the link
- 7 - memory allocation error
- 8 - path name cannot be expanded/shrunk
- 9 - buffer overrun when expanding/shrinking path name
- 10 - the file has changed while the definition within the Ucam does not
- 11 - license check failed
- 12 - too small buffer to return path name
- 13 - external link is pointing to itself
- 14 - time stamp available in the link is different
- 15 - dpf available in the link is different (dat_equal)

void apeGap (double dGap)

Sets the gap of the current thermal aperture.

Parameters:

- *dGap* double the gap of the current thermal aperture.

double apeGap ()

Gets the gap of the current thermal aperture.

Returns:
the gap of the current thermal aperture.
boolean apeHasPattern (boolean bUsed)
Returns true if the aperture has a pattern.
Parameters:
 bUsed pattern is used when it affects the image.
Returns:
 true if the aperture has a pattern.

void apeHeight (double dHeight)
Sets the height of the current text aperture.
Parameters:
 dHeight double the height of the current text aperture.

double apeHeight ()
Gets the height of the current text aperture.
Returns:
 the height of the current text aperture.

int apeIndex ()
Gets the index of the current aperture.
Returns:
 the index of the current aperture in the layer aperture list.

String apeInfo ()
Gets the information associated with the current aperture.
Returns:
 the information associated with the current aperture. null if the current aperture is not set.

void apeInner (double dinner)
Sets the inner diameter of the donut or thermal current aperture.
Parameters:
 dinner the new inner diameter of the donut or thermal current aperture.

double apeInner ()
void apeKind (String **sKind)**

Sets the kind of the current thermal aperture.

Parameters:

sKind String "rr" - round-round, "rs" - round-square, "ss" - square-square or "sr" - square-round.

String apeKind ()

Gets the kind of the current thermal or donut aperture.

Returns:

for Thermal:

- "rr" - round-round
- "rs" - round-square
- "ss" - square-square
- "sr" - square-rounded. for Donut:
 - "RR" - Circular outer and circular inner shape (round/round), the default.
 - "SS" - Square outer and square inner shape (square/square).
 - "SR" - Square outer and circular inner shape (square/round).

int apeMaxNetNumber ()

 Gets the maximum netnumber in current aperture.

Returns:

the maximum netnumber in current aperture.

void apeMirror (String **sMirror)**

Sets the mirror options for the current aperture.

Parameters:

sMirror String the mirror options for the current aperture. Values "", "X", "Y" or "XY".

String apeMirror ()

Gets the mirror options for the current aperture.

Returns:

the mirror options for the current aperture. Values "", "X", "Y" or "XY".
void apeName (String sName)

Sets the name of the current aperture.

Parameters:
 sName String the name of the current aperture.

String apeName ()

Gets the name of the current aperture.

Returns:
 the name of the current aperture.

void apeNumber (int iNumber)

Sets the current aperture number.

Parameters:
 iNumber int - the new number of the current aperture.

int apeNumber ()

Gets the current aperture number.

Returns:
 the current aperture number.

void apeNumberGap (int iNumGap)

Sets the number of gaps in the current thermal aperture.

Parameters:
 iNumGap integer - the number of gaps in the current thermal aperture.

int apeNumberGap ()

Gets the number of gaps in the current thermal aperture.

Returns:
 the number of gaps in the current thermal aperture.

int apeNumberObject (String sObjectClass)

Gets the number of objects in the current aperture object list. Objects are flashes, draws, arcs and vectortext.

Parameters:
objectClass
Specifies the class of the objects to count. "f" for flashes, "d" for draws, "a" for arcs and "v" for vectortext.

Returns:
the number of objects in the current aperture object list.

int apeNumberObject(
)

Gets the number of objects in the current aperture object list. Objects are flashes, draws, arcs and vectortext.

Returns:
the number of objects in the current aperture object list.

int apeNumberRegions(
)

Gets the number of regions in the complex, thermal or contour current aperture.

Returns:
the number of regions in the complex, thermal or contour current aperture.

int apeNumContours(
)

Gets the number of contours areas in the complex, thermal or contour current aperture.

Returns:
the number of contours areas in the complex, thermal or contour current aperture.

void apeOuter(double dOuter)

Sets the outer diameter of the circle, donut or thermal current aperture.

Parameters:

dOuter double the new diameter of the current aperture.

double apeOuter(
)

Gets the outer diameter of the circle, donut or thermal current aperture.

Returns:
the diameter of the current aperture.

void apePattern(String sPattern)

Sets the pattern of the aperture in DPF format.

Parameters:

sPattern String the pattern of the aperture in DPF format.
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Parameters</th>
<th>Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>String apePattern ()</td>
<td>Gets the pattern of the aperture in DPF format.</td>
<td></td>
<td>the pattern of the aperture in DPF format.</td>
</tr>
<tr>
<td>void apePatternAngle (double dPatternAngle)</td>
<td>Sets the angle of the pattern of the aperture.</td>
<td>dPatternAngle double the angle of the pattern of the aperture in degrees.</td>
<td></td>
</tr>
<tr>
<td>double apePatternAngle ()</td>
<td>Gets the angle of the pattern of the aperture.</td>
<td></td>
<td>the angle of the pattern of the aperture.</td>
</tr>
<tr>
<td>void apePatternStep (double dPatternStep)</td>
<td>Sets the step of the pattern of the aperture.</td>
<td>dPatternStep double - the step of the pattern of the aperture.</td>
<td></td>
</tr>
<tr>
<td>double apePatternStep ()</td>
<td>Gets the step of the pattern of the aperture.</td>
<td></td>
<td>the step of the pattern of the aperture.</td>
</tr>
<tr>
<td>void apePatternWidth (double dPatternWidth)</td>
<td>Sets the width of the pattern of the aperture.</td>
<td>dPatternWidth double the width of the pattern of the aperture.</td>
<td></td>
</tr>
<tr>
<td>double apePatternWidth ()</td>
<td>Gets the width of the pattern of the aperture.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Returns:
the width of the pattern of the aperture.

```c
void apePatternX ( double dX )
```
Sets the x size of the pattern of the aperture.

Parameters:

- `dX` double the x size of the pattern of the aperture in degrees.

```c
double apePatternX ( )
```
Gets the x size of the pattern of the aperture.

Returns:
the x size of the pattern of the aperture.

```c
void apePatternY ( double dY )
```
Sets the y size of the pattern of the aperture.

Parameters:

- `dY` double the y size of the pattern of the aperture in degrees.

```c
double apePatternY ( )
```
Gets the y size of the pattern of the aperture.

Returns:
the y size of the pattern of the aperture.

```c
Rectangle apeRectangle ( )
```
Gets the size of the aperture definition as a rectangle.

Returns:
the size of the aperture definition as a rectangle.

```c
void apeReverse ( boolean bReverse )
```
Sets the reverse status for the current aperture.

Parameters:

- `bReverse` boolean `true` for reverse, `false` otherwise.
boolean apeReverse ()
Gets the reverse status for the current aperture.

Returns:
true for reverse, false otherwise.

void apeRotation (double dRotation)
Sets the rotation of the current aperture.

Parameters:
dRotation double - the rotation of the current aperture.

double apeRotation ()
Gets the rotation of the current aperture.

Returns:
the rotation of the current aperture.

void apeScale (double dScale)
Sets the scale factor of the current aperture.

Parameters:
dScale double - the scale factor of the current aperture.

double apeScale ()
Gets the scale factor of the current aperture.

Returns:
the scale factor of the current aperture.

boolean apeSelection ()
Checks if the current aperture contains selected items.

Returns:
1 if there are selections, 0 otherwise.

Rectangle apeSelectionEnclosingBox ()
Gets the enclosed rectangle of all selected objects in current aperture.

Returns:
the enclosed rectangle of all selected objects in current aperture.
String apeShape ()

Gets the shape of the current aperture.

Returns:
- the shape of the current aperture ("cir", "blo", "box", "com", "con", "don", "rec", "txt", "the", "oct", "und").

void apeSize (double dSize)

Sets the size of the current octagon aperture.

Parameters:
- dSize double - the size of the current octagon aperture.

double apeSize ()

Gets the size of the current octagon aperture.

Returns:
- the size of the current octagon aperture.

void apeStartAngle (double dStartAngle)

Sets the start angle of the current thermal aperture.

Parameters:
- dStartAngle double - the start angle of the current thermal aperture.

double apeStartAngle ()

Gets the start angle of the current thermal aperture.

Returns:
- the start angle of the current thermal aperture.

void apeString (String sString)

Sets the text of the current text aperture.

Parameters:
- sString String - the text of the current text aperture.

String apeString ()

Gets the text of the current text aperture.
Returns:
the text of the current text aperture.

```c
void apeStroke ( double dStroke )
```

Sets the stroke width for the current contour aperture.

Parameters:
 dStroke double - the stroke width for the current contour aperture.

```c
double apeStroke ( )
```

Gets the stroke width for the current contour aperture.

Returns:
the stroke width for the current contour aperture.

```c
double apeSurface ( )
```

Get the surface of the current contour aperture in squared current units.

Returns:
the surface of the current contour aperture in squared current units.

```c
void apeThickenThin ( double value,
                      boolean keepArcs )
```

Perform thicken or thin (spread or choke) function on apertures. Aperture size will be changed.

Parameters:
 value The value to thicken (positive) or thin (negative)
 keepArcs If true, arcs are maintained within complex apertures.

```c
void apeWidth ( double dWidth )
```

Sets the width of the current text aperture.

Parameters:
 dWidth double - the width of the current text aperture.

```c
double apeWidth ( )
```

Gets the width of the current text aperture.

Returns:
the width of the current text aperture.

```c
void apeXCutOff ( double dXCutOff )
```

Sets the x cutoff value for the corners of the current box aperture.

Parameters:

- `dXCutOff` double - the x cutoff value for the corners.

```c
double apeXCutOff ( )
```

Gets the x cutoff value for the corners of the current box aperture.

Returns:

the x cutoff value for the corners.

```c
void apeXSize ( double dXSize )
```

Sets the x size of the rectangle or box current aperture.

Parameters:

- `dXSize` double - the x size of the current aperture.

```c
double apeXSize ( )
```

Gets the x size of the rectangle or box current aperture.

Returns:

the x size of the current aperture.

```c
void apeYCutOff ( double dYCutOff )
```

Sets the y cutoff value for the corners of the current box aperture.

Parameters:

- `dYCutOff` double - the y cutoff value for the corners.

```c
double apeYCutOff ( )
```

Gets the y cutoff value for the corners of the current box aperture.

Returns:

the y cutoff value for the corners.

```c
void apeYSize ( double dYSize )
```
Sets the y size of the rectangle or box current aperture.

Parameters:

\[dYSize \] double - the y size of the current aperture.

double apeYSize ()

Gets the y size of the rectangle or box current aperture.

Returns:

the y size of the current aperture.

int applyHorns (String hornType, double minimumClearance, ObjectList params)

Applies horns to all hornable pads in current selection or in current layer if there is no selection.

Parameters:

hornType the type of horn to apply. Can be "up", "up_tilted", "side", "corner_rec", "corner_square" or "corner_flat". (See drawings at [we need a location to add drawings, this is impossible to explain otherays]).

minimumClearance minimum free distance to other objects after applying horns

params an array containing all the parameters needed for the specific horn type. (See drawings at [we need a location to add drawings, this is impossible to explain otherays]).

Returns:

amount of pads to which horns were applied if successful -1 if params array contains non-floats -2 if an invalid horn type has been given -3 if params array was not of the right length

Arc Arc (double ptFromX, double ptFromY, double ptToX, double ptToY, double ptCenterX, double ptCenterY, String sSense, String sUnits)

Create arc from six coordinates and sense and units

Parameters:

ptFromX start point x coordinate

ptFromY start point y coordinate

ptToX end point x coordinate

ptToY end point y coordinate

ptCenterX center point x coordinate

ptCenterY center point y coordinate
Arc Arc (double ptFromX,
 double ptFromY,
 double ptToX,
 double ptToY,
 double ptCenterX,
 double ptCenterY,
 String sSense
)

Create arc from six coordinates and sense

Parameters:
 ptFromX start point x coordinate
 ptFromY start point y coordinate
 ptToX end point x coordinate
 ptToY end point y coordinate
 ptCenterX center point x coordinate
 ptCenterY center point y coordinate
 sSense arc sense

Returns:
 the arc

Arc Arc (Arc oArc)

Create copy of a arc

Parameters:
 oArc original arc

Returns:
 the arc

Arc Arc (Point ptFrom,
 Point ptTo,
 Point ptCenter,
 String sSense
)

Create arc from three points and sense

Parameters:
 ptFrom arc start point
 ptTo arc end point
 ptCenter arc end point
Returns:
the arc

```java
void autofixtureBuildFixture ( boolean bFixtureBuild,
                                String sFixture
                           )
```

Sets parameters to dialog Autofixture

Parameters:

- `bFixtureBuild` enable Fixture setting
- `sFixture` Fixture setting

Exceptions:

- `AbortException`

```java
void autofixtureDo ( )
```

Generate all data for an Autofixture

```java
void autofixtureMicroAdjustment ( boolean bMicroAdjustment,
                                   int iNbrOfTestPoints,
                                   double dTestPointDiameter,
                                   double dTestPointShiftEdge,
                                   double dTestPointShiftValue,
                                   double dTestPointPitch,
                                   double dClearanceFactor,
                                   double dCenterDiameter
                              )
```

Sets parameters to dialog Autofixture and to subdialog Micro Adjustment

Parameters:

- `bMicroAdjustment` enable Micro Adjustment Setup
- `iNbrOfTestPoints` The following alignment point parameters are used for all selected test points.
- `dTestPointDiameter` The aperture diameter of the pads used as alignment points (in the current unit).
- `dTestPointShiftEdge` The distance between the test point and the first alignment point's center (in the current unit).
- `dTestPointShiftValue` The distance between each of the alignment points' center on the axis of the shortest side (in the current unit).
- `dTestPointPitch` The distance between each of the alignment points center on the axis of the longest side (in the current unit).
- `dClearanceFactor` The minimum clearance required between other copper areas and the edge of the test point (at the longest side).
- `dCenterDiameter` The aperture diameter of the center point (in the current unit).

```java
void autofixtureNetlist ( boolean bNetlist,
                                  VHS API Specification
                           )
```

VHS API Specification

March 2018

Page 63 of 393
void autofixtureOutput (boolean bOutput)

Sets parameters to dialog Autofixture

Parameters:
 bOutput enable output settings

void autofixtureTestpoints (boolean bTestPoints,
 int iLoop,
 boolean bUseMasks,
 boolean bProbeSwaping,
 boolean bHandlePaintedPads,
 boolean bCircuitryCheck,
 boolean bFilterCopperAreas,
 boolean bViaOfSMDs,
 boolean bDrillsWithoutPad)

Sets parameters to dialog Autofixture to section Testpoints

Parameters:
 bTestPoints if true, calculate the test points of a job and to create one or two test point layers for the job.
 iLoop sets how to test pads in a loop
 bUseMasks if true, takes all solder mask layers into account for test point calculation.
 bProbeSwaping if true, marks all test points that can be technically tested on the other side of the pcb.
 bHandlePaintedPads if true, handle painted pads
 bCircuitryCheck if true, enables the generation of test points according to electrical test Optimization Rules.
 bFilterCopperAreas if true, reduces the number of test points generated in large coppers by removing all unnecessary test points that are satisfactorily surrounded by copper.
 bViaOfSMDs if true, generates the test points only on the via holes of SMD’s, according to the attribute settings for uVia.
 bDrillsWithoutPad if true, generates test points on drill holes without pad.
Sets parameters to dialog Autofixture to section Testpoints - Optimization Rule bottom side

Parameters:

- **bPointsBot1**: Sets a test point on a pad that is a drilled pad and that is not connected with any track (on the top or bottom layer).
- **bPointsBot2**: Sets a test point on a pad that is a drilled pad and that is connected with only one track on the test point side and not connected with any track on the opposite layer.
- **bPointsBot3**: Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side and connected with only one track on the opposite layer.
- **bPointsBot4**: Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side or the opposite layer, but is connected to one inner layer.
- **bPointsBot5**: Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side and connected with more than one track on the opposite layer.
- **bPointsBot6**: Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side or the opposite layer, but is connected to two or more inner layers.
- **bPointsBot7**: Sets a test point on a pad that is not a drilled pad and that is connected with more than one track.

Sets parameters to dialog Autofixture to section Testpoints - Optimization Rule top side

Parameters:

- **bPointsTop1**: Sets a test point on a pad that is a drilled pad and that is not connected with any track (on the top or bottom layer).
- **bPointsTop2**: Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side and connected with only one track on the opposite layer.
- **bPointsTop3**: Sets a test point on a pad that is a drilled pad and that is connected with only one track on the test point side and not connected with any track on the opposite layer.
- **bPointsTop4**: Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side or the opposite layer, but is connected to one inner layer.
- **bPointsTop5**: Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side and connected with more than one track on the opposite layer.
- **bPointsTop6**: Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side or the opposite layer, but is connected to two or more inner layers.
- **bPointsTop7**: Sets a test point on a pad that is not a drilled pad and that is connected with more than one track.
`void blockEdit()`
Aperture Manager: Enters Block Definition Edit Mode for current Block Aperture

`void blockMultiEdit()`
Aperture Manager: Enters Block Definition Multi Edit Mode for current Block Aperture

`int BlockReconstruct()`
Makes a block out of the current selection of the layer in plane1 and replaces any occurrences of the same data with a block flash.
Returns:
a negative number if a problem was detected or the number of blocks that were created otherwise.

`void boardSnapshot (boolean graph,
String templPath,
boolean pio,
String pioPath)`
Generate Board Snapshot
Parameters:
graph Generate graphical output if true
templPath Path to template files
pio Generate Product information text output if true
pioPath Path to information text

`void buildSubJobs()`
Created default sub-jobs

`void calculateImpedance (String slmpConfig,
ObjectList parameters)`
Calculate impedance
Parameters:
slmpConfig impedance configuration
parameters parameter array, e.g. {[width, height, thickness, er]}

`boolean canRead (ObjectList fileInfo)`
Tests whether the application can read the file denoted by this fileInfo.

Parameters:

`fileInfo` objectlist with the file information

Returns:

`true` if and only if the file denoted by this file info and it is allowed to read from the file; `false` otherwise

See also:

`HSH_base::osFileInfo(String)`

boolean canWrite (ObjectList fileInfo)

Tests whether the application can modify the file denoted by this fileInfo.

Parameters:

`fileInfo` objectlist with the file information

Returns:

`true` if and only if the file denoted by this file info and it is allowed to write to the file; `false` otherwise

See also:

`HSH_base::osFileInfo(String)`

void center (double center_x, double center_y)

Sets the Center Used in Numbers Dialog

Parameters:

`center_x` (X coordinate) the Center
`center_y` (Y coordinate) the Center

void center (Point center)

Sets the Center Used in Numbers Dialog

Parameters:

`center` the Center

Point center ()

Gets the Center Used in Numbers Dialog

Returns:

Center

void centerX (double centerX)
Sets the Center x coordinate Used in Numbers Dialog

Parameters:
- `centerX` the Center x coordinate

```java
void centerY ( double centerY )
```
Sets the Center y coordinate Used in Numbers Dialog

Parameters:
- `centerY` the Center y coordinate

```java
void chain ( )
```
If the order of the draws in a chain is not consecutive or if some of the draws have their vector-direction reversed you can use Chain to make the (selected) chains continuous.

```java
void chamferJoin ( double pt_x, 
                  double pt_y, 
                  double disX, 
                  double disY
)
```
Chamfer (cut the corner of) existing draws.

Parameters:
- `pt_x` (X coordinate) The junction of the two draws
- `pt_y` (Y coordinate) The junction of the two draws
- `disX` Horizontal length value (from chamfer to join)
- `disY` Vertical length value (from join to chamfer)

```java
void chamferJoin ( Point pt, 
                  double disX, 
                  double disY
)
```
Chamfer (cut the corner of) existing draws.

Parameters:
- `pt` The junction of the two draws
- `disX` Horizontal length value (from chamfer to join)
- `disY` Vertical length value (from join to chamfer)

```java
void changeDirection ( double p_x, 
                      double p_y
)
```
Changes direction of the closest rout chain. The point is defined as X and Y world coordinates.

Parameters:
- \(p_x \) (X coordinate) point where to look for the rout chain
- \(p_y \) (Y coordinate) point where to look for the rout chain

void changeDirection (Point p)

Changes direction of the closest rout chain. The point is defined as X and Y world coordinates.

Parameters:
- \(p \) point where to look for the rout chain

int changePrioPlotQueue (String sRipHost, int iJobId, int iPriority)

Change plot queue job priority

Parameters:
- \(sRipHost \) name of the Rip host
- \(iJobId \) ID of the rip job
- \(iPriority \) new priority

Returns:
- 0 if OK, otherwise is an error

boolean checkDrillInfo (boolean bSelNonPlated, boolean bAssignAttributes, boolean bBlocksOnly)

Drill Info Generates drill info and selects non plated holes in the active layers.

Parameters:
- \(bSelNonPlated \) When true, non plated drill holes are selected.
- \(bAssignAttributes \) When true, the drill info results are stored as attributes UdrillStat on the drill holes
- \(bBlocksOnly \) When true, drill info is only calculated for objects in Panel StepRepeat blocks

Returns:
- a status, false = ok

String chooseDirPath (String sTitle, String sStartDir)

Opens Open File dialog and let the user select directory path

Parameters:
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>String chooseDirPath (String sTitle)</code></td>
<td>Opens Open File dialog and let the user select directory path. Returns: Directory path. Exceptions: <code>AbortException</code> After Cancel button the script is aborted.</td>
</tr>
<tr>
<td><code>String chooseDirPath ()</code></td>
<td>Opens Open File dialog and let the user select directory path. Returns: Directory path. Exceptions: <code>AbortException</code> After Cancel button the script is aborted.</td>
</tr>
<tr>
<td><code>String chooseFilePath (String sTitle, String sStartDir, String sFileMask)</code></td>
<td>Opens Open File dialog and let the user select file path. Example: <code>openJob(chooseFilePath("Select Job", "D:/MyJobs/Test", ".job"));</code> <code>openJob(chooseFilePath("Select Job", "D:/MyJobs/Test", ".job"));</code> Parameters: sTitle Dialog title sStartDir initial directory when Open dialog is opened sFileMask file name mask Returns: Selected file path. Exceptions: <code>AbortException</code> After Cancel button the script is aborted. See also:</td>
</tr>
</tbody>
</table>
chooseFilePath()
chooseFilePath()
chooseFilePath(String)
chooseFilePath(String)
chooseFilePath(String, String)
chooseFilePath(String, String)

String chooseFilePath (String sTitle)

Opens Open File dialog and let the user select file path

Parameters:

- **sTitle** Dialog title

Returns:

Selected file path

Exceptions:

- **AbortException** After Cancel button the script is aborted.

See also:

chooseFilePath(String, String, String)
chooseFilePath(String, String, String)

String chooseFilePath (String sStartDir,

- **String sFileMask **

**)**

Opens Open File dialog and let the user select file path

Parameters:

- **sStartDir** initial directory when Open dialog is opened
- **sFileMask** file name mask

Returns:

Selected file path

Exceptions:

- **AbortException** After Cancel button the script is aborted.

See also:

chooseFilePath(String, String, String)
chooseFilePath(String, String, String)

String chooseFilePath ()

Opens Open File dialog and let the user select file path

Returns:
Selected file path

Exceptions:
AbortException After Cancel button the script is aborted.

See also:
chooseFilePath(String, String, String)
chooseFilePath(String, String, String)

void cleanApertures()
Aperture Manager: Group Apertures by Polarity in active layer in plane 1

void cleanApeTables()
Clean aperture tables on all active layers

void cleanETMComponentLayers(int type)
Creates or cleans existing component layers

Parameters:

type The type of the component layers to clean: 0: CAPACITOR; 1: INDUCTOR; 2: KELVIN; 3: RESISTOR; 4: DIODE; 5: HIPOT

void cleanSubJobs()
Clean all sub-jobs

void cleanUfd(String sUfdName)
Create new empty fault database with the given name and add it to Error Manager

Parameters:

sUfdName fault database name

void cleanUnderBlo()
Clean data under BLO with uPcb attribute using CLIPPING and MERGE.

void cleanup(double dReconstructArcs, double dValidateArcs, double dRemoveObsoleteObjects)
double dRemoveSmallObjects,
double dReconnectObjects,
boolean bReconstructArcs,
boolean bValidateArcs,
boolean bRemoveObsoleteObjects,
boolean bRemoveSmallObjects,
boolean bReconnectObjects
)

Parameters:
 dReconstructArcs arc reconstruct tolerance
 dValidateArcs arc validation tolerance
 dRemoveObsoleteObjects remove obsolete objects tolerance
 dRemoveSmallObjects remove small objects tolerance
 dReconnectObjects reconnect objects tolerance
 bReconstructArcs when true, arcs are reconstructed
 bValidateArcs when true, arcs are validated
 bRemoveObsoleteObjects when true, obsolete objects are removed
 bRemoveSmallObjects when true, small objects are removed
 bReconnectObjects when true, objects are reconnected

void clearance (double clearance)

Set the Clearance value

Parameters:
 clearance Value of the Clearance

double clearance ()

Gets the Clearance number value

Returns:
 Value of the Clearance

void clearanceCheckMAT (double dPadSpread,
 double dSmdSpread,
 double dTrackSpread,
 double dAreaSpread,
 double dPadPadClearance,
 double dPadSmdClearance,
 double dPadTrackClearance,
 double dPadAreaClearance,
 double dSmdSmdClearance,
 double dSmdTrackClearance,
 double dSmdAreaClearance,
 double dTrackTrackClearance,
 double dTrackAreaClearance,
)
double dAreaAreaClearance,
boolean bCheckSameNetSpacing,
boolean bFastMode,
int iShiftMode,
double dMinCopper
)

Secure Etch Compensation

Parameters:
- **dPadSpread**: The spread value to apply to circular pads
- **dSmdSpread**: The spread value to apply to non circular pads
- **dTrackSpread**: The spread value to apply to draws
- **dAreaSpread**: The spread value to apply to areas
- **dPadPadClearance**: The clearance to keep between circular pads
- **dPadSmdClearance**: The clearance to keep between circular pads and non circular pads
- **dPadTrackClearance**: The clearance to keep between circular pads and draws
- **dPadAreaClearance**: The clearance to keep between circular pads and areas
- **dSmdSmdClearance**: The clearance to keep between non circular pads
- **dSmdTrackClearance**: The clearance to keep between non circular pads and draws
- **dSmdAreaClearance**: The clearance to keep between non circular pads and areas
- **dTrackTrackClearance**: The clearance to keep between draws
- **dTrackAreaClearance**: The clearance to keep between draws and areas
- **dAreaAreaClearance**: The clearance to keep between areas
- **bCheckSameNetSpacing**: Whether to check spacing between objects of the same net as well
- **bFastMode**: If true, skip slow "select embedded" step to make check faster but sometimes less correct
- **iShiftMode**: Mode to shift clearances, 0: no shift, 1: shift to cut only areas, 2: like 1, but keep original copper of areas
- **dMinCopper**: The minimum copper width to keep

void clearanceCheckMAT (double dPadSpread,
 double dSmdSpread,
 double dTrackSpread,
 double dAreaSpread,
 double dPadPadClearance,
 double dPadSmdClearance,
 double dPadTrackClearance,
 double dPadAreaClearance,
 double dSmdSmdClearance,
 double dSmdTrackClearance,
 double dSmdAreaClearance,
 double dTrackTrackClearance,
 double dTrackAreaClearance,
 double dAreaAreaClearance,
 boolean bCheckSameNetSpacing,
 boolean bFastMode,
 int iShiftMode
)
Parameters:

- **dPadSpread**: The spread value to apply to circular pads
- **dSmdSpread**: The spread value to apply to non-circular pads
- **dTrackSpread**: The spread value to apply to draws
- **dAreaSpread**: The spread value to apply to areas
- **dPadPadClearance**: The clearance to keep between circular pads
- **dPadSmdClearance**: The clearance to keep between circular pads and non-circular pads
- **dPadTrackClearance**: The clearance to keep between circular pads and draws
- **dPadAreaClearance**: The clearance to keep between circular pads and areas
- **dSmdSmdClearance**: The clearance to keep between non-circular pads
- **dSmdTrackClearance**: The clearance to keep between non-circular pads and draws
- **dSmdAreaClearance**: The clearance to keep between non-circular pads and areas
- **dTrackTrackClearance**: The clearance to keep between draws
- **dTrackAreaClearance**: The clearance to keep between draws and areas
- **dAreaAreaClearance**: The clearance to keep between areas
- **bCheckSameNetSpacing**: Whether to check spacing between objects of the same net as well
- **bFastMode**: If true, skip slow "select embedded" step to make check faster but sometimes less correct
- **iShiftMode**: Mode to shift clearances, 0: no shift, 1: shift to cut only areas, 2: like 1, but keep original copper of areas

```c
void clearanceCheckMAT ( double dPadSpread,
        double dSmdSpread,
        double dTrackSpread,
        double dAreaSpread,
        double dPadPadClearance,
        double dPadSmdClearance,
        double dPadTrackClearance,
        double dPadAreaClearance,
        double dSmdSmdClearance,
        double dSmdTrackClearance,
        double dSmdAreaClearance,
        double dTrackTrackClearance,
        double dTrackAreaClearance,
        double dAreaAreaClearance,
        boolean bCheckSameNetSpacing,
        boolean bFastMode )
```

Secure Etch Compensation

Parameters:

- **dPadSpread**: The spread value to apply to circular pads
- **dSmdSpread**: The spread value to apply to non-circular pads
- **dTrackSpread**: The spread value to apply to draws
- **dAreaSpread**: The spread value to apply to areas
- **dPadPadClearance**: The clearance to keep between circular pads
- **dPadSmdClearance**: The clearance to keep between circular pads and non-circular pads
- **dPadTrackClearance**: The clearance to keep between circular pads and draws
- **dPadAreaClearance**: The clearance to keep between circular pads and areas
- **dSmdSmdClearance**: The clearance to keep between non-circular pads
- **dSmdTrackClearance**: The clearance to keep between non-circular pads and draws
- **dSmdAreaClearance**: The clearance to keep between non-circular pads and areas
- **dTrackTrackClearance**: The clearance to keep between draws
- **dTrackAreaClearance**: The clearance to keep between draws and areas
- **dAreaAreaClearance**: The clearance to keep between areas
void clearMessages ()

Clears messages window

boolean clipping (int iClipReference,
 String sClipSide,
 double dClipClr,
 double dMinLineLength,
 boolean bRounded)

Clipping

Parameters:

iClipReference Ref layer for clipping (0 for outline, 1, 2, 3 or 4 for plane colors)

sClipSide Side where clipping should be applied ("outside" or "inside")

dClipClr Clearance after clipping

dMinLineLength Minimum length of clipped objects

bRounded True if endpoints of clipped objects should be round

Returns:

status value

boolean clipSilk (double dClr,
 double dMinLen)

Silk Optimize Clips all silk layers in this job. The corresponding mask layers is used as a reference for clipping, or the corresponding outer layer is used in case there is no mask layer found. Only pads and tracks are clipped in the silk layers, and only pads are used as clipping reference.

Parameters:

dClr is the clearance value that should be used for clipping. Silk Clipping removes data from the silk layer so that silk clearance is assured between objects of the silk layer and objects of the reference layer.

dMinLen indicates the value for which tracks smaller than this value will be removed.

Returns:

true if no clipping was done, if no problem then returns false.
void closeAMLJobManager ()

close AMLI Job Manager

void closeAnamorphicScale ()

close AnamorphicScale dialog

void closeApeCreator ()

close Aperture Creator

void closeApeEditor ()

close Aperture Editor

void closeApertureAttributes ()

close Aperture Attributes dialog

void closeApertureManager ()

close Aperture Manager dialog

void closeAttributeEditor ()

close Attribute Editor dialog

void closeAttributeManager ()

close Attribute Manager dialog

void closeAutoDrill ()

close AutoDrill dialog

void closeAutoDrillEditor ()

Close AutoDrill Editor
void closeAutoFixture ()
close AutoFixture dialog

void closeBarcode ()
close Barcode dialog

void closeBarcode128 ()
close Barcode 128 dialog

void closeBoardAnalyzer ()
close Board Analyzer dialog

void closeBoardSnapshot ()
close Board Snapshot dialog

void closeCalculatorSetup ()
close Calculator Setup dialog

void closeCamtek ()
close Camtek dialog

void closeCheckList ()
close CheckList Dialog

void closeCheckListDefineChecklist ()
Close "CheckList: Define Checklist" Dialog

void closeCheckListDefineSteps ()
void closeClipping ()
close Clipping dialog

void closeColor ()
Close Color dialog

void closeConnect ()
close Connect dialog

void closeContourHandling ()
close Contour Handling dialog

void closeConvertAttributes ()
close Attribute Converter dialog

void closeCopperBalance ()
close Copper Balance Dialog

void closeCopperRepair ()
close Copper Repair dialog

void closeOverlayOptimizer ()
close Overlay Optimizer dialog

void closeCU9000Dialog ()
Close DS DI output dialog
void closeDatums ()
 close Datums dialog

void closeDistort ()
 close Distort dialog

void closeDrawSlots ()
 close Draw Slots Dialog

void closeDRC ()
 close DRC dialog

void closeDrillInfo ()
 close Drill Info dialog

void closeDrillMap ()
 close Drill Map Dialog

void closeDrillOptimizer ()
 close Smart Drill Optimizer

void closeDrillRoutSetups ()
 Close Drill/Rout Setups dialog

void closeDrillTolerance ()
 Close Drill Tolerance dialog

void closeDrillToolManager ()
 close Drill Tool Manager
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>void closeDsAoi()</td>
<td>Close DS AOI dialog</td>
</tr>
<tr>
<td>void closeDSAOIolog()</td>
<td>Close DS DI output dialog</td>
</tr>
<tr>
<td>void closeDsAoiPreview()</td>
<td>Close DS AOI dialog</td>
</tr>
<tr>
<td>void closeEditingToolbox()</td>
<td>Close Editing Toolbox dialog</td>
</tr>
<tr>
<td>void closeEditVectorText()</td>
<td>Close Edit Vector Text dialog</td>
</tr>
<tr>
<td>void closeErrors()</td>
<td>Close Errors dialog</td>
</tr>
<tr>
<td>void closeEtchCompensation()</td>
<td>Close Etch Compensation dialog</td>
</tr>
<tr>
<td>void closeExpand()</td>
<td>Close Expand dialog</td>
</tr>
<tr>
<td>void closeExternalLinkManager()</td>
<td>Close External Link Manager</td>
</tr>
<tr>
<td>Method Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>void closeFillAngledPattern ()</td>
<td>close Fill Angled Pattern Dialog</td>
</tr>
<tr>
<td>void closeFillPattern ()</td>
<td>close Fill Pattern Dialog</td>
</tr>
<tr>
<td>void closeFillVector ()</td>
<td>close Fill Vector Dialog</td>
</tr>
<tr>
<td>void closeFlashMaker ()</td>
<td>close FlashMaker dialog</td>
</tr>
<tr>
<td>void closeFlexManager ()</td>
<td>close uFlex Manager</td>
</tr>
<tr>
<td>void closeFlipJob ()</td>
<td>close Flip Job dialog</td>
</tr>
<tr>
<td>void closeFrame (String sFrameName)</td>
<td>Closes custom dockable frame with given identification</td>
</tr>
<tr>
<td></td>
<td>Parameters:</td>
</tr>
<tr>
<td></td>
<td>sFrameName identification frame given by getFrameID() method of CustomFrame class</td>
</tr>
<tr>
<td>void closeGridParameters ()</td>
<td>close Grid Parameters dialog</td>
</tr>
<tr>
<td>void closeHiPot ()</td>
<td>close HiPot dialog</td>
</tr>
<tr>
<td>Function Name</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>void closeImageCompare ()</td>
<td>close Image Compare dialog</td>
</tr>
<tr>
<td>void closeImpedanceControl ()</td>
<td>close Impedance Control dialog</td>
</tr>
<tr>
<td>void closeImportODBxx ()</td>
<td>close Import ODBxx Steps dialog</td>
</tr>
<tr>
<td>void closeInsertContourText ()</td>
<td>close Insert Contour Text dialog</td>
</tr>
<tr>
<td>void closeInsertVectorText ()</td>
<td>close Insert Vector Text dialog</td>
</tr>
<tr>
<td>void closeJobDefinition ()</td>
<td>close Job Definition dialog</td>
</tr>
<tr>
<td>void closeJobEdit ()</td>
<td>close Job Edit dialog</td>
</tr>
<tr>
<td>void closeJobEditor ()</td>
<td>Close Job Editor dialog</td>
</tr>
<tr>
<td>void closeJobEditorOptions ()</td>
<td>Close Job Editor Options dialog</td>
</tr>
<tr>
<td>void closeJobMerge ()</td>
<td></td>
</tr>
</tbody>
</table>
void closeJobPlaneSetup ()
Close Job Plane Setup dialog

void closeJobPrint ()
Close Job Print dialog

void closeLayerEdit ()
close Layer Modify dialog

void closeLegendOptimizer ()
close Legend Optimizer dialog

void closeLoadCheckList ()
close Load CheckList Dialog

void closeMagnifier ()
close Magnifier window

void closeMarkupAssistant ()
close Markup Assistant

void closeMessages ()
close Messages log window

void closeMLIOutput ()
close MLI Output dialog
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>void closeModels()</code></td>
<td>close Models dialog</td>
</tr>
<tr>
<td><code>void closeNetCompare()</code></td>
<td>close Net Compare dialog</td>
</tr>
<tr>
<td><code>void closeNonFunctionalPad()</code></td>
<td>close Non-Functional pads dialog</td>
</tr>
<tr>
<td><code>void closeNumbers()</code></td>
<td>close Numbers dialog</td>
</tr>
<tr>
<td><code>void closeObjectAttributes()</code></td>
<td>close Object Attributes dialog</td>
</tr>
<tr>
<td><code>void closeObjectCompare()</code></td>
<td>close Object Compare dialog</td>
</tr>
<tr>
<td><code>void closeOutputAccumatch()</code></td>
<td>Close Accumatch Output dialog</td>
</tr>
<tr>
<td><code>void closeOutputAOI()</code></td>
<td>Close AOI Output dialog</td>
</tr>
<tr>
<td><code>void closeOutputCAD()</code></td>
<td>close Output CAD dialog</td>
</tr>
<tr>
<td><code>void closeOutputCamtek()</code></td>
<td>Close Camtek Output dialog</td>
</tr>
<tr>
<td>Function Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td><code>void closeOutputDrillRout()</code></td>
<td>close Drill/Rout dialog</td>
</tr>
<tr>
<td><code>void closeOutputDsDi()</code></td>
<td>Close DS DI output dialog</td>
</tr>
<tr>
<td><code>void closeOutputDsDiPreview()</code></td>
<td>Close DS DI Preview dialog</td>
</tr>
<tr>
<td><code>void closeOutputNetlist()</code></td>
<td>close Output Netlist dialog</td>
</tr>
<tr>
<td><code>void closeOutputOrbot()</code></td>
<td>Close Orbot Output dialog</td>
</tr>
<tr>
<td><code>void closeOutputSapphire()</code></td>
<td>Close Sapphire Output dialog</td>
</tr>
<tr>
<td><code>void closeOutputScoring()</code></td>
<td>close Output Scoring dialog</td>
</tr>
<tr>
<td><code>void closeOutputSmartArgos()</code></td>
<td>Close SmartArgos Output dialog</td>
</tr>
<tr>
<td><code>void closeOutputTrackscan()</code></td>
<td>Close Trackscan Output dialog</td>
</tr>
<tr>
<td><code>void closeOutputUxpAutomanager()</code></td>
<td></td>
</tr>
</tbody>
</table>
void closeOutputUxpEt ()
Close Output UXP Et dialog

void closePanelFramesCoupons ()
Close Panel Frames Coupons dialog

void closePanelLinks ()
Close Panel Links dialog

void closePanelPlus ()
close PanelPlus dialog

void closePanelReproduce ()
close PanelReproduce dialog

void closePanelSetup ()
Close Panel Setup dialog

void closePanelStepRepeat ()
close Panel Step Repeat dialog

void closePlaneAdjuster ()
close Plane Adjuster dialog

void closePlotParameters ()
close Plot Parameters dialog
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>void closePPMonitor ()</td>
<td>close PPMonitor dialog</td>
</tr>
<tr>
<td>void closeQueryNet ()</td>
<td>close Query Net dialog</td>
</tr>
<tr>
<td>void closeQueryObject ()</td>
<td>close Query Object dialog</td>
</tr>
<tr>
<td>void closeReferencePoints ()</td>
<td>close Reference Points dialog</td>
</tr>
<tr>
<td>void closeRegister ()</td>
<td>close Register dialog</td>
</tr>
<tr>
<td>void closeRemoveAttributes ()</td>
<td>close Remove Attributes dialog</td>
</tr>
<tr>
<td>void closeRepair ()</td>
<td>Close Repair dialog</td>
</tr>
<tr>
<td>void closeRoutManager ()</td>
<td>close Rout Editor dialog</td>
</tr>
<tr>
<td>void closeRoutManagerCleanUp ()</td>
<td>close Rout Editor dialog</td>
</tr>
<tr>
<td>void closeRoutManagerDimensioning ()</td>
<td>close Rout Editor dialog</td>
</tr>
</tbody>
</table>
void closeRoutManagerEditor ()
close Rout Editor dialog

void closeRoutManagerTools ()
close Rout Editor dialog

void closeSaveLayout ()
close Save Window Layout dialog

void closeSecureEtchCompensation ()
close Secure Etch Compensation dialog

void closeSelections ()
close Selections dialog

void closeSetupOptions ()
Close Setup Options dialog

void closeSetupSave ()
Close Save dialog

void closeShavePads ()
close Shave Pads dialog

void closeSignalLayerAdjuster ()
close Signal Layer Adjuster dialog
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>void closeSilkOptimizer()</code></td>
<td>close Silk Optimizer</td>
</tr>
<tr>
<td><code>void closeSmartCamtek()</code></td>
<td>close SmartCamtek dialog</td>
</tr>
<tr>
<td><code>void closeSmartDRC()</code></td>
<td>close Smart DRC dialog</td>
</tr>
<tr>
<td><code>void closeSmartFix()</code></td>
<td>close SmartFix dialog</td>
</tr>
<tr>
<td><code>void closeSmartplot()</code></td>
<td>Close Smartplot dialog</td>
</tr>
<tr>
<td><code>void closeSmartSR()</code></td>
<td>Close Smart S&R dialog</td>
</tr>
<tr>
<td><code>void closeSmartStart()</code></td>
<td>close Smart Start dialog</td>
</tr>
<tr>
<td><code>void closeSoldermask()</code></td>
<td>close Soldermask Dialog</td>
</tr>
<tr>
<td><code>void closeSoldermaskOptimizer()</code></td>
<td>close Soldermask Optimizer Dialog</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>void closeTearDrop()</td>
<td>close Tear Drop Dialog</td>
</tr>
<tr>
<td>void closeTechnicalAnalyzer()</td>
<td>close Technical Analyzer dialog</td>
</tr>
<tr>
<td>void closeTestpointEdit()</td>
<td>close Testpoint edit dialog</td>
</tr>
<tr>
<td>void closeToolbarManager()</td>
<td>close Toolbar Manager Dialog</td>
</tr>
<tr>
<td>void closeToolbars()</td>
<td>close Toolbars Dialog</td>
</tr>
<tr>
<td>void closeTransformObjects()</td>
<td>close Transform Objects dialog</td>
</tr>
<tr>
<td>void closeTransformObjectsBGAPads()</td>
<td>close Transform Objects BGA Pads dialog</td>
</tr>
<tr>
<td>void closeTransformObjectsBGATracks()</td>
<td>close Transform Objects BGA Tracks dialog</td>
</tr>
<tr>
<td>void closeTransformObjectsEdit()</td>
<td>close Transform Objects Edit dialog</td>
</tr>
<tr>
<td>void closeTransformObjectsRescale()</td>
<td>close Transform Objects Rescale dialog</td>
</tr>
</tbody>
</table>
void closeUcamDbEditor ()
Close Ucamdb Editor dialog

void closeUndoRedoDetails ()
close Undo/Redo Details

void closeUTest ()
close UTest dialog

void closeUtestUtilities ()
close Utest Utilities dialog

void closeValidateLayer ()
close Layer Validation dialog (or not, if everything is fine)

void closeVectorTextFont ()
close Vector Text Font dialog

void closeVerifyArcsDraws ()
close Verify Arcs and Draws dialog

void closeViewGuide ()
close View Guide dialog

void colorAll (String exclSubClass,
boolean bKeepLayActivity)
Assigns a plane to all layers that have no plane assigned yet.

Parameters:
exclSubClass null or comma separated string, list subclasses that won't be colored.
bKeepLayActivity true keeps layer activity, false deactivates all layers without color if active.

void colorAll (String exclSubClass)

Assigns a plane to all layers that have no plane assigned yet.

Parameters:

- **exclSubClass** null or comma separated string, list subclasses that won’t be colored.

void compareImage (String reference, boolean bAutoAlign, double missingTol, double exceedingTol, int iErrorAccuracy, ObjectList revPolArr, int compSelMode)

Image Compare (external reference)

Parameters:

- **reference** Reference job or reference layer to compare with
- **bAutoAlign** Automatically align current and reference layers
- **missingTol** Allowed tolerance of missing copper
- **exceedingTol** Allowed tolerance of exceeding copper
- **iErrorAccuracy** The display accuracy for differences
- **revPolArr** Array of layers with reverse polarity, e.g. `[["lay1", false, true]], [["lay2", true, true]]` means: lay1 of current job not reversed but reference reversed; lay2 current and reference both reversed
- **compSelMode** 0: compare all, 1: blocks - compare on primary, 2: compare in areas, 3: compare outside areas
void compareImage (double missingTol,
 double exceedingTol,
 int iErrorAccuracy,
 boolean bRevPolarityCur,
 boolean bRevPolarityRef,
 int compSelMode)

Image Compare (Layer 1 - Layer 2)

Parameters:
- **missingTol**: Allowed tolerance of missing copper
- **exceedingTol**: Allowed tolerance of exceeding copper
- **iErrorAccuracy**: The display accuracy for differences
- **bRevPolarityCur**: If true, layer 1 (current) has reversed polarity,
- **bRevPolarityRef**: If true, layer 2 (reference) has reversed polarity,
- **compSelMode**: 0: compare all, 1: blocks - compare on primary, 2: compare in areas, 3: compare outside areas

void compareNet (int iMode,
 boolean bCheckFlash)

Net Compare

Parameters:
- **iMode**: Compare mode - 1: basic tests, 2: 1 + multiple nets, 3: 2 + not fully covered
- **bCheckFlash**: true: test for missing flash
void compareNet (int iMode,
 boolean bCheckFlash,
 String sReferenceFile,
 boolean bPanelize
)

Net Compare

Parameters:
 iMode Compare mode - 1: basic tests, 2: 1 + multiple nets, 3: 2 + not fully covered
 bCheckFlash true: test for missing flash
 sReferenceFile Reference file for multi job net compare
 bPanelize Panelize reference

void compareNet (int iMode,
 boolean bCheckFlash,
 boolean bIgnoreOutline,
 double dOutlineMargin,
 boolean bIgnoreNPTHPads,
 double dNPTHExpandMargin,
 String sReferenceFile,
 boolean bPanelize
)

Net Compare

Parameters:
 iMode Compare mode - 1: basic tests, 2: 1 + multiple nets, 3: 2 + not fully covered
 bCheckFlash true: test for missing flash
 bIgnoreOutline true: ignore nets outside the outline
 dOutlineMargin Net references inside the outline and near the outline edge within the chosen margin are also ignored.
 bIgnoreNPTHPads true: ignore for the 'Lost Elements' test those pads which correspond to a NPTH hole
 dNPTHExpandMargin Net references which correspond to a NPTH hole after expanding the hole with this margin are ignored
 sReferenceFile Reference file for multi job net compare
 bPanelize Panelize reference

Deprecated:
 use compareNet(boolean, boolean, String, boolean, boolean)
 use compareNet(boolean, boolean, boolean)

void compareNet (boolean bShorts,
 boolean bOpens,
 boolean bLostElements,
 boolean bDoubleNet,
 boolean bNotCovered,
 boolean bCheckFlash,
)
boolean bIgnoreOutline,
double dOutlineMargin,
boolean bIgnoreNPTHPads,
double dNPTHExpandMargin,
String sReferenceFile,
boolean bPanelize,
boolean bBuildNetlist
)

Net Compare

Parameters:

- **bShorts**: true: test for shorts
- **bOpens**: true: test for opens
- **bLostElements**: true: test for missing copper elements
- **bDoubleNet**: true: test for reference pads touching more than one net
- **bNotCovered**: true: test for reference pads not fully covered by copper
- **bCheckFlash**: true: test for missing flash
- **bIgnoreOutline**: true: ignore nets outside the outline
- **dOutlineMargin**: Net references inside the outline and near the outline edge within the chosen margin are also ignored.
- **bIgnoreNPTHPads**: true: ignore for the 'Lost Elements' test those pads which correspond to a NPTH hole
- **dNPTHExpandMargin**: Net references which correspond to a NTPH hole after expanding the hole with this margin are ignored
- **sReferenceFile**: Reference file for reference job comparison
- **bPanelize**: Panelize reference
- **bBuildNetlist**: Build Job Netlist

void compareObjects (String referenceJob,
 double xTol,
 double yTol,
 boolean bWindow,
 boolean bObjMoved,
 boolean bObjAdded,
 boolean bObjNet,
 boolean bApeShape,
 boolean bApeSize,
 boolean bApeOrder
)

Object Compare

Parameters:

- **referenceJob**: Reference job to campare with
- **xTol**: Tolerance of comparison in X direction
- **yTol**: Tolerance of comparison in Y direction
- **bWindow**: Reference points in drill layer are used to define area
- **bObjMoved**: Mark objects that have been moved
- **bObjAdded**: Mark objects that exist only in current job
- **bObjNet**: Check net numbers
- **bApeShape**: Check for changes to aperture shapes
void compensate (String \(sSense, \)
\[\begin{align*}
\text{double} & \quad \text{dis} \\
\end{align*}\)
)

Compensate rout for the thickness of the routing tool.

Parameters:
- \(sSense \) Compensates for the size of the routing tool to the "left" or "right"
- \(\text{dis} \) Distance of compensation

void complexEdit ()

Aperture Manager: Enters Complex Definition Edit Mode for current Complex Aperture

int connectPadTrack (double \(dActiveRadius, \)
\[\begin{align*}
\text{double} & \quad \text{dSnapRadius,} \\
\text{boolean} & \quad \text{bUseNetlist} \\
\end{align*}\)
)

connectPadTrack

Parameters:
- \(dActiveRadius \) Maximum length of connect vector
- \(dSnapRadius \) Maximum distance over which a vector can be snapped
- \(bUseNetlist \) If true only vectors of identical, valid net can be connected

Returns:
- error number (100 = no netlist) or number of errors

void connectTracks ()

Connect tracks corresponds to: Transform Objects - BGA Tracks - Connect Tracks

boolean contourizeBitmap (int \(iPpi, \)
\[\begin{align*}
\text{double} & \quad \text{dMargin,} \\
\text{double} & \quad \text{dDxy,} \\
\text{double} & \quad \text{dDx,} \\
\text{double} & \quad \text{dDy} \\
\end{align*}\)
)

contourizeBitmap

Parameters:
- \(iPpi \)
Returns:
 status

void contourizeExact ()

Exact Contourize analytic contourize

void contourizeExactAperture ()

Exact Contourize the (current) aperture

boolean contourizePatterns (int iPpi)

Contourize apertures with patterns in the layer in plane 1

Parameters:
 iPpi given DPI

Returns:
 status false = 0 = ok;

boolean contourizePatternsinJob (int iPpi)

Contourize apertures with patterns in all active layers

Parameters:
 iPpi given DPI

Returns:
 status false = 0 = ok;

void contourThickenThin (double value,
 boolean bKeepArcs)

Perform thicken or thin (spread or choke) function on contours. Aperture size will be changed.

Parameters:
 value The value to thicken (positive) or thin (negative)
 bKeepArcs If true, arcs are maintained.

boolean convertGar (String sInputFile,
String sGarFile,
String sOutputFile
);

convert input file by rules from gar file to output file

Parameters:
- sInputFile full path to input file
- sGarFile full path to gar file (rules)
- sOutputFile full path to output file

Returns:
- status

void copperBalancePad (double dMinClrToCopper,
 double dMinClrToBoard,
 double dMinConSurface,
 String sFillPattern,
 double dPatternClr,
 double dApeSize,
 String sApeShape
);

Creates the venting pattern. The area will be filled with pads

Parameters:
- dMinClrToCopper - Minimum Clearance to Copper, specify the clearance between the copper from the affected layer and the newly created pattern. If the layer is drilled, this value will also be used as clearance between the copper pattern and the holes.
- dMinClrToBoard - Minimum Clearance to Board. Specify the clearance from the board edge to the outline of the pattern contour. The original outline will be shrinked with this value to meet the desired clearance.
- dMinConSurface - Minimum Contour Surface. All the copper surfaces, smaller than the specified value, are removed.
- sFillPattern - Choose one of the following options: - full - pads are placed on each grid points - even - pads are placed only on even grid points - odd - pads are placed only on odd grid points
- dPatternClr - Specify the grid step used to place the pads or tracks.
- dApeSize - Specify the size of the aperture used to fill the area.
- sApeShape - Choose one of the following options - circle, hexagon, diamond

void copperBalanceSolid (double dMinClrToCopper,
 double dMinClrToBoard,
 double dMinConSurface,
 double dApeSize
);

Creates the venting pattern. The area will be filled with a solid contour

Parameters:
- dMinClrToCopper - Minimum Clearance to Copper, specify the clearance between the copper from the affected layer and the newly created pattern. If the layer is drilled, this value will also be used as clearance between the copper pattern and the holes.
dMinClrToBoard - Minimum Clearance to Board. Specify the clearance from the board edge to the outline of the pattern contour. The original outline will be shrinked with this value to meet the desired clearance.

dMinConSurface - Minimum Contour Surface. All the copper surfaces, smaller than the specified value, are removed.

dApeSize - Specify the size of the aperture used to fill the area.

```csharp
void copperBalanceTrack ( double dMinClrToCopper,
                          double dMinClrToBoard,
                          double dMinConSurface,
                          String sLineStyle,
                          double dPatternClr,
                          double dApeSize,
                          double dRotation )
```

Creates the venting pattern. The area will be filled with tracks using a circle aperture

Parameters:

- **dMinClrToCopper** - Minimum Clearance to Copper, specify the clearance between the copper from the affected layer and the newly created pattern. If the layer is drilled, this value will also be used as clearance between the copper pattern and the holes.

- **dMinClrToBoard** - Minimum Clearance to Board. Specify the clearance from the board edge to the outline of the pattern contour. The original outline will be shrinked with this value to meet the desired clearance.

- **dMinConSurface** - Minimum Contour Surface. All the copper surfaces, smaller than the specified value, are removed.

- **sLineStyle** - Select the track style to be applied: "parallel lines" or "crosshatched by lines"

- **dPatternClr** - Specify the grid step used to place the pads or tracks.

- **dApeSize** - Specify the size of the aperture used to fill the area.

- **dRotation** - set a rotation angle for tracks

```csharp
void copperCount ( String sOpt )
```

Deprecated: Copper count without mask layer usage

Parameters:

- **sOpt** Set to "job", "layer", or "inner"

```csharp
void copperRepair ( String sOpt,
                   double smallerThan,
                   double minSize,
                   double expand )
```

Copper Repair

Parameters:

- **sOpt** Repair option ("pinholes", "peelables" or "slivers")
smallerThan pinholes, peelables or slivers smaller than this value are repaired
minSize peelables or slivers larger than this value are repaired
expand Expand value for pinholes, peelables or slivers

```java
void copy ( double pt_x,
            double pt_y
        )
```

Duplicate (selected) object(s) using board coordinates

Example:

```java
setInPlane(1,1);
direction("");
copy(100,200);
copy(100,200);
doCopy(100,200);

direction("h");
copy(100,200);
copy(100,200);
doCopy(100,200);

direction("v");
copy(100,200);
copy(100,200);
doCopy(100,200);
```

Parameters:

- `pt_x` (X coordinate) Offset (vector) where to create the copy of the source objects

See also:

- com.barco.ets.uacam.hypershell.HyperShell::doCopy(Upoint)
- com.barco.ets.uacam.hypershell.HyperShell::direction(String)

```java
Parameters:
    pt_y (Y coordinate) Offset (vector) where to create the copy of the source objects
```

See also:

- com.barco.ets.uacam.hypershell.HyperShell::doCopy(Upoint)
- com.barco.ets.uacam.hypershell.HyperShell::direction(String)

```java
void copy ( Point pt )
```

Duplicate (selected) object(s) using board coordinates

Example:

```java
setInPlane(1,1);
direction("");
copy(100,200);
copy(100,200);
doCopy(100,200);

direction("h");
copy(100,200);
copy(100,200);
doCopy(100,200);

direction("v");
copy(100,200);
copy(100,200);
doCopy(100,200);
```
void copyOutline (double refPoint_x,
 double refPoint_y,
 double offset_x,
 double offset_y,
 double rotation)

PCB images in a flat data need to be outlined. We can manually construct outline contour in this (usually the layer in plane 1 and outline extra layer) layer according to a PCB image in reference layer. We mark reference point in PCB image and give an offset of the same reference data in second PCB image we want to outline. The rotation says the PCB outline on target PCB should be rotated 0,90,180,270 degree.

Parameters:
refPoint_x (X coordinate) A point where the PCB data are taken as an reference (for alignment)
refPoint_y (Y coordinate) A point where the PCB data are taken as an reference (for alignment)
offset_x (X coordinate) a target PCB should have the same objects (from reference point) at the offset position
offset_y (Y coordinate) a target PCB should have the same objects (from reference point) at the offset position
rotation the target Outline has to be rotated with given angle (0,90,180,270)

Returns:
Uapeobj can be null in case the new outline couldn't be created. The return aperture can be the same in case the target is without rotation. Only the object(flash) is the new. In case there is a rotation the return object is completely new aperture with the (one) new flash.

void copyOutline (Point refPoint,
 Point offset,
 double rotation)

PCB images in a flat data need to be outlined. We can manually construct outline contour in this (usually the layer in plane 1 and outline extra layer) layer according to a PCB image in reference layer. We mark reference point in PCB image and give an offset of the same reference data in second PCB image we want to outline. The rotation says the PCB outline on target PCB should be rotated 0,90,180,270 degree.

Parameters:
refPoint A point where the PCB data are taken as an reference (for alignment)
offset a target PCB should have the same objects (from reference point) at the offset position
rotation the target Outline has to be rotated with given angle (0,90,180,270)

Returns:
Uapeobj can be null in case the new outline couldn't be created. The return aperture can be the same in case the target is without rotation. Only the object(flash) is the new. In case there is a rotation the return object is completely new aperture with the (one) new flash.
void copyToClipboard ()
Copy all (selected) objects on layer in plane 1 Objects are stored in clipboard

void coreInfo ()
Core/Prepreg Info Gives information to log window (console) Adds information like attribute to dpf and job files

int countAmbiguousContours ()
Count ambiguous contours.
Returns: count of ambiguous contours

int countAmbiguousContoursOnLayer ()
Count ambiguous contours.
Returns: count of ambiguous contours

int countInvalidArcs ()
Count invalid arcs.
Returns: count of ambiguous contours

int countInvalidArcsOnLayer ()
Count invalid arcs.
Returns: count of invalid draws

int countInvalidDraws ()
Count invalid draws.
Returns: count of invalid draws

int countInvalidDrawsOnLayer ()
Count Invalid Draws on layer.

Returns:
 count of invalid draws

int countOpenContours ()

Count Open Contours.

Returns:
 count of open contours

int countOpenContoursOnLayer ()

Count Open Contours on layer.

Returns:
 count of open contours

int countOverlapContours ()

Count Overlap Contours.

Returns:
 count of overlap contours

int countOverlapContoursOnLayer ()

Count Overlap Contours on layer.

Returns:
 count of overlap contours

int countUndefinedApertures ()

Count Undefined apertures.

Returns:
 count of undefined apertures

int countUndefinedAperturesOnLayer ()

Count Undefined apertures on layer.

Returns:
 count of undefined apertures
int countZeroDrawsArcs (double dMaxLength,
 boolean bFunctional,
 boolean bNonFunctional
)

Count ZeroDrawsArcs.

Parameters:
\- \textit{dMaxLength} \quad \text{Maximum length of objects to be selected}
\- \textit{bFunctional} \quad \text{Select objects within functional copper if true}
\- \textit{bNonFunctional} \quad \text{Select objects within non-functional copper if true}

Returns:
\text{count of ZeroDrawsArcs}

int countZeroDrawsArcsOnLayer (double dMaxLength,
 boolean bFunctional,
 boolean bNonFunctional
)

Count ZeroDrawsArcs on layer.

Parameters:
\- \textit{dMaxLength} \quad \text{Maximum length of objects to be selected}
\- \textit{bFunctional} \quad \text{Select objects within functional copper if true}
\- \textit{bNonFunctional} \quad \text{Select objects within non-functional copper if true}

Returns:
\text{count of ZeroDrawsArcs}

void countZeroLengthDrawsArcs (double dMaxLength,
 boolean bFunctional,
 boolean bNonFunctional
)

Count Zero Length Draws and Arcs

Parameters:
\- \textit{dMaxLength} \quad \text{Maximum length of objects to be selected}
\- \textit{bFunctional} \quad \text{Select objects within functional copper if true}
\- \textit{bNonFunctional} \quad \text{Select objects within non-functional copper if true}

void createAperture (int iApeNum,
 String sApeName,
 String sApeDef,
 ObjectList attrArray
)

Aperture Manager: Create an Aperture
Parameters:
- **iApeNum**: Number of Aperture to create; if < 0, next free number will be used
- **sApeName**: Name of Aperture to create
- **sApeDef**: DPF style Definition String of Aperture, e.g. "REC,1.905,0.3048"
- **attrArray**: Array of Aperture Attributes, e.g. [{"attr1=v1", "attr2="", "attr3=v3"}]

boolean createBarcode128 (double \(dHeight\), double \(dNarrowX\), String \(sValue\))

Create barcode 128 like block aperture and add the aperture to the layer. If you want add a flash, you must call insertFlash too.

Parameters:
- **\(dHeight\)**: The barcode height.
- **\(dNarrowX\)**: The width of narrow bars.
- **\(sValue\)**: a string, what will be transform to barcode

Returns:
- status, if return true, the function was ok

boolean createBarcode39 (double \(dHeight\), double \(dNarrowX\), double \(dRatio\), String \(sValue\))

Create barcode 39 like block aperture and add the aperture like current to the layer. If you want add a flash, you must call insertFlash too.

Parameters:
- **\(dHeight\)**: The barcode height.
- **\(dNarrowX\)**: The width of narrow bars.
- **\(dRatio\)**: The barcode ratio.
- **\(sValue\)**: a string, what will be transform to barcode

Returns:
- status, if return true, the function was ok

boolean createBarcodeInterleaved25 (double \(dHeight\), double \(dNarrowX\), String \(sValue\))

Create barcode interleaved 25 like block aperture and add the aperture like current to the layer. If you want add a flash, you must call insertFlash too.

Parameters:
- **\(dHeight\)**: The barcode height.
- **\(dNarrowX\)**: The width of narrow bars.
sValue a string, what will be transform tu barcode

Returns:
status, if return true, the function was ok

```java
void createBlockAperture ( int iApeNum,
String sApeName,
String sApeDef,
ObjectList attrArray,
int iMode,
boolean bWithCenter,
double pt_x,
double pt_y,
String sExtFile )
```

Aperture Manager: Create a Block Aperture

Parameters:

- **iApeNum** Number of Aperture to create (if < 0, next free number will be used)
- **sApeName** Name of Aperture to create
- **sApeDef** DPF style Definition String of Aperture; 'BLO' and 'size' is not required
- **attrArray** Array of Aperture Attributes, e.g. ["attr1=v1", "attr2=", "attr3=v3"]
- **iMode** 0: empty block, 1: use selections, 2: link to external dpf file
- **bWithCenter** subtract center offset (used only for iMode 1)
- **pt_x** (X coordinate) center
- **pt_y** (Y coordinate) center
- **sExtFile** External link file (used only for iMode 2)
void createComplexAperture (int iApeNum,
 String sApeName,
 String sApeDef,
 ObjectList attrArray,
 boolean bUseRegion,
 boolean bWithCenter,
 double pt_x,
 double pt_y)

Aperture Manager: Create a Complex Aperture

Parameters:
- **iApeNum** Number of Aperture to create (if < 0, next free number will be used)
- **sApeName** Name of Aperture to create
- **sApeDef** DPF style Definition String of Aperture; 'COM' and 'size' is not required
- **attrArray** Array of Aperture Attributes, e.g. [{"attr1=v1", "attr2=", "attr3=v3"}]
- **bUseRegion** true: use only regions, false: use all selections
- **bWithCenter** Subtract center offset
- **pt** (X coordinate) center point

 (Y coordinate) center point
Create barcode - data matrix like block aperture and add the aperture like current to the layer. If you want add a flash, you must call insertFlash too.

Parameters:
- `sTextToEncode` Text of the DataMatrix
- `sMode` Mode of the encoding (MODE_ASCII, MODE_C40, MODE_TEXT, MODE_BASE256, MODE_NONE, MODE_AUTO)
- `sFormat` Format of the DataMatrix
- `dDotSize` Size of the dot in the DataMatrix
- `dRotation` rotation
- `sMirror` The mirror setting, either "", "X", "Y" or "XY".
- `dClearance` clearance
- `bReverse` Indication whether the block aperture needs to be reversed or not.

```java
void createDrill ( String layName,
                 String subClass,
                 int     from,
                 int     to )
```

Create Drill

Parameters:
- `layName` Name of layer
- `subClass` Subclass of layer
- `from` From layer
- `to` To layer

```java
void createDrill ( int laynum,
                  int drillFrom,
                  int drillTo )
```

create drill layer

Parameters:
- `laynum` The number of the drill layer
- `drillFrom` Index of the top drilled layer
- `drillTo` Index of the bottom drilled layer

```java
void createExtra ( String layName,
                   String subClass,
                   String attach,
                   int     index )
```
void createExtra (String layName,
 String subClass,
 String attach
)

Create Extra Layer

Parameters:

 layName Name of layer
 subClass Subclass of layer
 attach Attached to top, bottom or none

void createExtra (String attach)

Create Extra Layer

Parameters:

 attach "top" or "bottom"

void createLayer (String layName,
 String subClass,
 int layPos,
 String readable
)

Create Layer

Parameters:

 layName Name of layer
 subClass Subclass of layer
 layPos Position of layer
 readable Readable side

void createLayer (int laynum)

create signal layer

Parameters:

 laynum The number of the signal layer
void createQRCode (String sCode,
 double dDotSize,
 double dAngle,
 String sMirror,
 double dClr,
 double dLabelClr,
 String sLabelPos,
 boolean bMicroQR,
 boolean bReverse
)

Create QRCode as a block aperture and add the aperture like current to the layer. If you want add a flash, you must call insertFlash too.

Parameters:

- **sCode**: Text of the QRCode
- **dDotSize**: Size of the dot in the QRCode
- **dAngle**: Rotation
- **sMirror**: The mirror setting, either "", "X", "Y" or "XY".
- **dClr**: Clearance
- **dLabelClr**: Label clearance
- **sLabelPos**: label position possible values are "top" or "bottom"
- **bMicroQR**: if true the QRCode is MicroQR
- **bReverse**: Indication whether the block aperture needs to be reversed or not.
Create QRCode as a block aperture and add the aperture like current to the layer. If you want add a flash, you must call insertFlash too.

Parameters:
- `sCode` Text of the QRCode
- `dDotSize` Size of the dot in the QRCode
- `dAngle` Rotation
- `sMirror` The mirror setting, either "", "X", "Y" or "XY".
- `dClr` Clearance
- `bMicroQR` if true the QRCode is MicroQR
- `bReverse` Indication whether the block aperture needs to be reversed or not.

Modify/Create sub-job

Parameters:
- `from` layer index the new or modified sub-job starts at
- `to` layer index the new or modified sub-job ends at
- `selectedSubJob` the index of the sub-job, starts with 0, -1 - create new sub-job
- `selectedLevel` the index of the level of the sub-job, starts with 0, -1 - create new sub-job

Create a new layer which contains the voronoi diagram of the layer in plane 1. This method works on selections, too. This method is licensed.

Parameters:
- `iEdgeTypes` bit mask specifying which edge/node types need to be output: INNER_EDGES = 0x01; OUTER_EDGES = 0x02; MAIN_EDGES = 0x04 (net separators); DEGENERATE_EDGES = 0x08; BIG_DEADENDS = 0x10; MAXIMUM_NODES = 0x20; ALL_EDGES = 0x3f.
Create a new layer which contains the voronoi diagram of the layer in plane 1. This method works on selections, too. This method is licensed.

Parameters:
- `iEdgeTypes` bit mask specifying which edge/node types need to be output: INNER_EDGES = 0x01; OUTER_EDGES = 0x02; MAIN_EDGES = 0x04 (net separators); DEGENERATE_EDGES = 0x08; BIG_DEADENDS = 0x10; MAXIMUM_NODES = 0x20; ALL_EDGES = 0x3f.
- `bExpandArcs` Expand arcs before calculating the diagram.

```java
void createVoronoiEdgesExtFile ( boolean bExpandArcs,
    String sFilePath,
    String sOptions
)
```

Create an external file with the voronoi diagram edges of the layer in plane 1. This method works on selections, too. This method is licensed.

Parameters:
- `bExpandArcs` Expand arcs before calculating the diagram.
- `sFilePath` complete destination file path
- `sOptions` options separated by comma like: binary(default), xml, copper_only, space_only (default is copper and space)

```java
void CU9000ApplyPlotstamps ( ObjectList plotstamps )
```

The function takes the Object Aray with plotststmps' definitions and applies the changes to plotstamps linked to given layer (usually layer in plane 1)

Parameters:
- `plotstamps` Object Array with plotstams' definitions

```java
boolean CU9000CheckPlotstamps ( )
```

The method checks Level plotstamps if they are place at correct Level (PCB counter at PCB level etc.)

Returns:
- `false` check failed due to invalid conditions (layer is not in plane 1, license is missing etc.)

```java
boolean CU9000DetectAutoAreas ( String resultLayerName,
                                  String referenceLayerName,
                                  double margin
)
```

Automatically generate rectangular areas from defined area marks in reference layer.

Parameters:
- `resultLayerName` name of the generated area layer
boolean CU9000DetectExactAreas

Automatically generate exact outline areas for uPCB blocks for the red layer

Parameters:
- `resultLayerName` name of the generated area layer
- `blockMode` what to use as a reference for block detection: OUTLINE (1) - use outline layer, REFERENCE_LAYER (2) - use specified reference layer, SELF (3) - use red layer
- `pcbName` uPCB name to search (if empty, search for deepest level)
- `referenceLayerName` reference layer name, REFERENCE_LAYER block mode
- `margin` margin to be added
- `outline` stroke width for exact outline detection

Returns:
false if a problem was detected during Area Detection or true otherwise.

int CU9000DetectGlobalAlignment

Automatically detects global alignment points in the red layer

Parameters:
- `sAPRefLayerName` a layer name containing alignment points

Returns:
- a negative number if a problem was detected or the number of placed global alignment points otherwise

int CU9000DetectLocalAlignmentPoints

Automatically detects local alignment points in the red layer

Parameters:
- `sAPRefLayerName` a layer name containing alignment points

Returns:
- a negative number if a problem was detected or the number of placed global alignment points otherwise
Parameters:
 sAPRefLayerName a layer name containing alignment points

Returns:
 a negative number if a problem was detected or the number of placed local alignment points otherwise

int CU9000DetectLocalAlignmentPoints ()

Automatically detects local alignment points in the red layer

Returns:
 a negative number if a problem was detected or the number of placed local alignment points otherwise

boolean CU9000DetectRectangularAreas (String resultLayerName, int blockMode, String pcbName, String referenceLayerName, double margin)

Automatically generate rectangular areas for uPCB blocks for the red layer

Parameters:
 resultLayerName name of the generated area layer
 blockMode what to use as a reference for block detection: OUTLINE (1) - use outline layer
 pcbName uPCB name to search (if empty, search for deepest level)
 referenceLayerName reference layer name REFERENCE_LAYER block mode
 margin margin to be added

Returns:
 false if a problem was detected during Area Detection or true otherwise

ObjectList CU9000GetPlotstamps ()

The function returns Object Array of the plotstamps' definitions for given (current) layer.

Returns:
 Object Array with plotstamps' definitions related to the given layer. Example:
 [[["Code=PP,Polarity=Positive,Mirror=x,Rotation=0.0", "247.3172", "170.7196", "panel=1,array=3,pcb=3"], [["Code=PP,Polarity=Positive,Mirror=x,Rotation=0.0", "247.3172", "205.7196", "panel=1,array=3,pcb=1"], [["Code=PP,Polarity=Positive,Mirror=x,Rotation=0.0", "282.3172", "170.7196", "panel=1,array=3,pcb=4"], ...]]]

void CU9000GUIApply ()

Method simulates Apply button press.
void CU9000GUILoadAlignment (String sAlignmentPath)
loads Alignment points definition file and updates GUI
Parameters:
 sAlignmentPath Alignment points definition file (TXT or Gerber) full path

void CU9000GUILoadBrd (String sBrdPath)
loads definition file and updates GUI
Parameters:
 sBrdPath Board Definition file (.brd) full path

void CU9000GUILoadRgi (String sRgiPath)
loads definition file and updates GUI
Parameters:
 sRgiPath Board Definition file (.rgi) full path

void CU9000GUISaveAlignment (String sAlignmentPath)
saves Alignment points definition file
Parameters:
 sAlignmentPath Alignment points definition file (TXT or Gerber) full path

boolean CU9000LoadBoardSetup (String path)
Apply the given Board Setup file to all active layers
Parameters:
 path path to board setup file
Returns:
 false if the board file could not be loaded or true otherwise.

boolean CU9000LoadResistSetup (String path)
Apply the given Resist Setup file to all active layers
Parameters:
 path path to resist setup file
Returns:
 false if the resist file could not be loaded or true otherwise.
boolean CU9000LoadResources (String sPropertiesPath,
 String sPropertiesName,
 String sConversionFileName)

Loads given resource files

Parameters:
 sPropertiesPath properties directory
 sPropertiesName eg. DS_DI.properties file name
 sConversionFileName eg. odb2Li-Ledia.txt plotstamps conversion definition file

Returns:
 true if the files have been correctly loaded; otherwise false

ObjectList CU9000OrderPlotstamps (Object[] plotstamps,
 String sLevel,
 String sAtLevel,
 String sStart,
 String sOrder)

Reorder specific Plotstamps at given level.

Parameters:
 plotstamps the Object Array of the all plotstamps.
 sLevel the level of the plotstamps to be reordered (usually "pcb", "array").
 sAtLevel reordering may be related to given level (usually "panel" or "array").
 sStart may be one of "TL" - for top left, "TR" - top right, "BL" - bottom left, "BR" - bottom right
 sOrder may be one of "XX" - row ordered in the same orientation, "YY" - columns are ordered in the same direction, "XY" - rows are ordered zigzag, "YZ" - columns are ordered zigzag.

boolean CU9000Output (String machine)

Perform CU9000 output of active layers.

Parameters:
 machine name of target machine

Returns:
 false if a problem was detected during output or true otherwise

void CU9000SaveBPIs ()

Saves BPI for current front layer and back layer if exists. Layer activity is also taken into account

void CU9000SaveLocalAlignmentPoints (String sOutputFilePath)

Saves local alignment points from current layer. The local alignment points are taken from BPI linked to
void CU9000SaveLocalAlignmentPoints (String sOutputFilePath, boolean bShareAlignmentMarks)

Saves local alignment points from this layer data structure

Parameters:

- **sOutputFilePath** A full output file name. Eg. "T:\CU9000\job\F_LOCAL_ALN_MARK.TXT"
- **bShareAlignmentMarks** the alignment marks are shared with other areas if true and areas are set.

boolean CU9000SetParameters (String xmlFile)

Apply parameters for CU9000 from XML file to the active layers

Parameters:

- **xmlFile** full path to XML file containing the settings to be applied. The XML file must conform to the DI_Settings schema

Returns:

false if the file was found to be invalid or if a problem occurred during applying the settings, or true otherwise

void cutToClipboard ()

Delete all (selected) objects on layer in plane 1. Objects are stored in clipboard

void dbBoolean (String dbKey, Boolean bValue)

Modifies HOME Ucam.db file. Sets the value of the given key.

Parameters:

- **dbKey** modified or added Ucam.db key
- **bValue** the value of the Ucam.db key.

boolean dbBoolean (String dbKey)

Returns boolean Ucam.db value of the given key

Parameters:

- **dbKey** Ucam.db key
boolean `dbBooleanDef (String dbKey, boolean bDefault)`

Returns boolean Ucam.db value of the given key

Parameters:
- `dbKey` Ucam.db key
- `bDefault` default value is returned if given key doesn't exist

Returns:
boolean Ucam.db value of the given key or false if the key is not defined

void `dbDouble (String dbKey, Boolean dValue)`

Modifies HOME Ucam.db file. Sets the value of the given key.

Parameters:
- `dbKey` modified or added Ucam.db key
- `dValue` the value of the Ucam.db key.

double `dbDouble (String dbKey)`

Returns double Ucam.db value of the given key

Parameters:
- `dbKey` Ucam.db key

Returns:
double Ucam.db value of the given key

double `dbDoubleDef (String dbKey, double dDefault)`

Returns double Ucam.db value of the given key

Parameters:
- `dbKey` Ucam.db key
- `dDefault` default value is returned if given key doesn't exist

Returns:
double Ucam.db value of the given key
void dbInteger (String \textit{dbKey},
 Integer \textit{iValue})

Modifies HOME Ucam.db file. Sets the value of the given key.

\textbf{Parameters:}
\begin{itemize}
 \item \textit{dbKey} modified or added Ucam.db key
 \item \textit{iValue} the value of the Ucam.db key.
\end{itemize}

\begin{itemize}
\item \textbf{int dbInteger (String \textit{dbKey})}
\item Returns integer Ucam.db value of the given key
\item \textbf{Parameters:}
 \item \textit{dbKey} Ucam.db key
\item \textbf{Returns:}
 \item integer Ucam.db value of the given key
\end{itemize}

\begin{itemize}
\item \textbf{int dbIntegerDef (String \textit{dbKey},
 int \textit{iDefault})}
\item Returns integer Ucam.db value of the given key
\item \textbf{Parameters:}
 \item \textit{dbKey} Ucam.db key
 \item \textit{iDefault} default value is returned if given key doesn't exist
\item \textbf{Returns:}
 \item integer Ucam.db value of the given key
\end{itemize}

\begin{itemize}
\item \textbf{void dbPath (String \textit{dbKey},
 String \textit{sPath})}
\item Modifies HOME Ucam.db file. Sets the value of the given key.
\item \textbf{Parameters:}
 \item \textit{dbKey} modified or added Ucam.db key
 \item \textit{sPath} the value of the Ucam.db key.
\end{itemize}

\begin{itemize}
\item \textbf{String dbPath (String \textit{dbKey})}
\item Returns Path Ucam.db value of the given key
\item \textbf{Parameters:}
 \item \textit{dbKey} Ucam.db key
\end{itemize}
Returns: Path Ucam.db value of the given key

```java
String dbPathDef ( String dbKey,
                                        String sDefault
                                 )
```

Returns Path Ucam.db value of the given key

Parameters:

- `dbKey` Ucam.db key
- `sDefault` default value is returned if given key doesn't exist

Returns:

Path Ucam.db value of the given key

```java
void dbString ( String dbKey,
                                        String sValue
                                 )
```

Modifies HOME Ucam.db file. Sets the value of the given key.

Parameters:

- `dbKey` modified or added Ucam.db key
- `sValue` the value of the Ucam.db key.

```java
String dbString ( String dbKey )
```

Returns String Ucam.db value of the given key

Parameters:

- `dbKey` Ucam.db key

Returns:

String Ucam.db value of the given key

```java
String dbStringDef ( String dbKey,
                                        String sDefault
                                 )
```

Returns String Ucam.db value of the given key

Parameters:

- `dbKey` Ucam.db key
- `sDefault` default value is returned if given key doesn't exist

Returns:

String Ucam.db value of the given key
void dbUnitValue (String dbKey, String sValue)

Modifies HOME Ucam.db file. Sets the value of the given key.

Parameters:
- *dbKey* modified or added Ucam.db key
- *sValue* the value of the Ucam.db key (eg. "1 mil"...)

void dbUnitValue (String dbKey, Double dValue)

Modifies HOME Ucam.db file. Sets the value of the given key.

Parameters:
- *dbKey* modified or added Ucam.db key
- *dValue* the value of the Ucam.db key.

double dbUnitValue (String dbKey)

Returns Unit Ucam.db value of the given key.

Parameters:
- *dbKey* Ucam.db key

Returns:
- Unit Ucam.db value of the given key

double dbUnitValueDef (String dbKey, double dDefault)

Returns Unit Ucam.db value of the given key.

Parameters:
- *dbKey* Ucam.db key
- *dDefault* default value is returned if given key doesn't exist

Returns:
- Unit Ucam.db value of the given key

double dbUnitValueDef (String dbKey, String sDefault)

Returns Unit Ucam.db value of the given key.

Parameters:
Returns:
 Unit Ucam.db value of the given key

void defaultOrder ()

Displays the current order of the rout path in a separate layer. Each chain of draws and arcs makes up a rout group which gets a sequence number. This number can be changed to change the rout order of the groups.

void defineFirst (double p_x,
 double p_y
)

Defines start point of the chain. It is the from point of the closest element to defined point. The point is defined as X and Y world coordinates.

Parameters:
 p_x (X coordinate) the new start point
 p_y (Y coordinate) the new start point

void defineFirst (Point p)

Defines start point of the chain. It is the from point of the closest element to defined point. The point is defined as X and Y world coordinates.

Parameters:
 p the new start point

void defineGroup (double p_x,
 double p_y,
 int iGroupNumber
)

Defines group at given point with the given index. The point is defined as X and Y world coordinates.

Parameters:
 p_x (X coordinate) the point
 p_y (Y coordinate) the point
 iGroupNumber the index of the defined group

void defineGroup (Point p,
 int iGroupNumber
)

Defines group at given point with the given index. The point is defined as X and Y world coordinates.
Parameters:

\[p \] the point
\[iGroupNumber \] the index of the defined group

void defineSelectedGroup()

Defines group from selected elements.

void delete()

Delete all (selected) objects on active layers

See also:
`deleteWithApe()`

void deleteAllCFMEEAlignmentPoints()

Remove all alignment points

void deleteAllRefPoints (boolean bOnAllActiveLay)

Delete all reference points from layer

Parameters:

\[bOnAllActiveLay \] if true it work on all active layers otherwise only on active loaded layer in plane 1

void deleteAllYsphotechAlignmentPoints (int region)

Remove all alignment point from a region

Parameters:

\[region \] the regionnumber (0 for global)

void deleteAperture()

Aperture Manager: Deletes current Aperture

void deleteApertureAttribute (String sAttributeName)

Aperture Manager: Delete an Attribute of current Aperture

Parameters:

\[sAttributeName \] The name of the Attribute to delete
void deleteCFMEEAlignmentPoint (int point)

Remove all alignment points

Parameters:
 point the alignment point number

void deleteDouble ()

Deletes overlapping parts of the draws. When two draws partially overlap the overlapping part of the draw is deleted. When two draws completely overlap the shortest draw is deleted.

void deleteLayerByClass (String className,
 String subClass,
 int num,
 String side)

Delete Layer by Class

Parameters:
 className The class of the layer wanted : "layer", "drill", "core" or "extra".
 subClass The subclass for the layer wanted. The default subclasses offered by Ucam are: "rout", "silk", "mask", "paste", "exclusion", "netref", "testpoints", "probe" and "guideplate".
 num The layer number. For "layer" and "drill" the layers are numbered from 1 to the number of layers for that class. For "extra" the layers are numbered per subclass.
 side Specifies the attachment for "extra" layers. Can be "top", "bottom", or "none"

void deleteLayersByActivation (boolean active)

Delete active/deactive layers

Parameters:
 active Set true to delete activated and false to delete deactivated layers

void deleteLayersByName (String layName)

Delete Layers by name

Parameters:
 layName Name (or name part) of any layer (layer, extra or drill)

See also:
 deleteLayersByNames(String)

void deleteLayersByNames (String layNames)
Delete Layers by names **Example:**

- "test_txt" exact name
- "*_txt" or all layers with name ending ".txt"
- "tmp_.*_tmp:_tmp:?" or semicolon separated list of wild cards

Parameters:

- layNames
 semicolon separated list of the wild cards.

See also:

deleteLayersByName(String)

void deleteLayersByPlane (int plane)

Delete Layer by plane

Parameters:

- plane
 Number of plane

void deleteRefPoint (int lIndex, boolean bOnAllActiveLay)

Delete refpoint from layer

Parameters:

- lIndex
 The reference point number.

- bOnAllActiveLay
 if true it work on all active layers otherwise only on active loaded layer in plane 1

void deleteRefPoints (ObjectList Indexes, boolean bOnAllActiveLay)

Delete reference points from layer

Parameters:

- Indexes
 list of reference points numbers.

- bOnAllActiveLay
 if true it work on all active layers otherwise only on active loaded layer in plane 1

void deleteSubJob (int index, int level)

Delete sub-job

Parameters:

- index
 index - works on sub-job with the given index

- level
 index - delete defined level of the sub-job on the index
void deleteTrueObjects()

deletes all True Objects contained in a given job

void deleteWithApe()

Delete all (selected) objects on active layers and remove unused apertures Not used by GUI

See also:
delete()

void deleteWorkspace (String sWorkspaceName)

Delete workspace layout file with a given name. NOTE: The same as menu command Workspaces > Delete...
> Delete

Parameters:
sWorkspaceName

void deleteYsphotechAlignmentPoint (int region, int point)

Remove all alignment point from a region

Parameters:
region the regionnumber (0 for global)
point

void deleteZeroLengthDraws (double dMaxLength, boolean bFunctional, boolean bNonFunctional)

Delete Zero Length Draws and Arcs

Parameters:
dMaxLength Maximum length of objects to be deleted
bFunctional Delete objects within functional copper if true
bNonFunctional Delete objects within non-functional copper if true

void deselectAll()

Deselect all objects.
void deselectAllApertures()
Aperture Manager: Deselect all Objects of all Apertures in Aperture list

void deselectAperture (ObjectList apIndexArray)
Aperture Manager: Deselect Objects of Apertures

Parameters:
apIndexArray Array of indexes of the apertures on the current layer

void deselectAperture ()
Aperture Manager: Deselect Objects of current Aperture

void deselectObjectAttribute (String sAttrName, String sAttrValue)

Deprecated:
deselectObjectAttribute deselect objects with attribute with the given name and value from current job.

Parameters:
sAttrName The object attribute name
sAttrValue The object attribute value

void deselectObjectAttribute (String sAttrName)

Deprecated:
deselectObjectAttribute deselect objects with attribute with the given name from current job.

Parameters:
sAttrName The object attribute name

void deselectObjectByAttribute (String sAttrName, String sAttrValue)
deselectObjectAttribute deselect objects with attribute with the given name and value from current job.

Parameters:
sAttrName The object attribute name
sAttrValue The object attribute value

void deselectObjectByAttribute (String sAttrName)
deselectObjectAttribute deselect objects with attribute with the given name from current job.

Parameters:

- **sAttrName** The object attribute name

--

```java
boolean detectPCBOutlines ( String sLayName, 
     String sParams
)
```

Detects PCB Outlines in current job

Parameters:

- **sLayName** name of a new layer
- **sParams** comma separated parameters

Returns:

- true if OK, otherwise false when something fails

--

```java
boolean DetectPlaceHolders ( String sHandlerName, 
     String sParams
)
```

The function detects all placeholders using customer's Handler.

Parameters:

- **sHandlerName** Handler's name is the same as the name of registered Handler
- **sParams** can be null or empty if it has to use default parameters. Given parameters are handled in specific Handler constructor.

Returns:

- true when a layer with placeholder has been created and added to the Job, otherwise it returns false

--

```java
boolean DetectPlaceHoldersAtLayer ( String sHandlerName, 
     String sParams
)
```

The function detects all placeholders using customer's Handler.

Parameters:

- **sHandlerName** Handler's name is the same as the name of registered Handler
- **sParams** can be null or empty if it has to use default parameters. Given parameters are handled in specific Handler constructor.

Returns:

- true when a layer with placeholder has been created and added to the Job, otherwise it returns false

--

```java
void dimensioning ( String sType, 
     double dApertureSize, 
     ObjectList oPoints, 
     boolean bShowErrors,
)
```

VHS API Specification March 2018 Page 129 of 393
double dArrowHeadWidth,
double dArrowHeadHeight,
double dRuleToElement,
double dRuleToDimLine,
double dTextToDimLine,
double dTextHeight,
double dTextWidth,
double dTolerancePos,
double dToleranceNeg,
double dToleranceScale,
int iFormat,
boolean bProjectionHorizontal,
boolean bProjectionVertical,
String sFontName,
int iFontStyle,
int iFontSize,
String sLabel
)

Inserts an object of the given type in the layer using the list of points.

Parameters:

- **sType** dimensioning object type
- **dApertureSize** aperture size
- **oPoints** array of points
- **bShowErrors** When true, the errors are displayed, when false not. False is used for preview mode
- **dArrowHeadWidth** Width of the arrow head
- **dArrowHeadHeight** Height of the arrow head
- **dRuleToElement** The distance between the rule draws and the measurement points
- **dRuleToDimLine** The distance of the text to the text line
- **dTextToDimLine** The distance of the text to the text line
- **dTextHeight** The height of the text
- **dTextWidth** The width of the text. In case a font is defined, this value is ignored
- **dTolerancePos** The value for the positive tolerance. If both the positive and negative tolerance values are 0.0, no tolerance labels are displayed.
- **dToleranceNeg** The value for the negative tolerance. If both the positive and negative tolerance values are 0.0, no tolerance labels are displayed.
- **dToleranceScale** The fraction of the text height to use for the tolerance labels
- **iFormat** The number of decimals to use
- **bProjectionHorizontal** When true, the horizontal distance is shown. The angle distance is not shown when true
- **bProjectionVertical** When true, the vertical distance is shown. The angle distance is not shown when true
- **sFontName** font name, see java.awt.Font constructor
- **iFontStyle** font style, see java.awt.Font constructor
- **iFontSize** font size, see java.awt.Font constructor
- **sLabel** The text of Label

String direction ()

Get the Move/Copy direction value
Returns:
"h" for horizontal, "v" for vertical or "" for free

void direction (String sDirection)

Set the Move/Copy direction value

Parameters:
- **sDirection** "h" for horizontal, "v" for vertical or "" for free

void distance (double distance)

Set the Distance value

Parameters:
- **distance** Value of the Distance

double distance ()

Gets the Distance number value

Returns:
- Value of the Distance

boolean distort (double x, double y, double pCenter_x, double pCenter_y)

Distort - distort the X and/or Y coordinates of the objects of a layer. Only the flash and draw coordinates are affected, not the pad sizes. For block apertures the data inside the block and the block flash points are distorted. The block options are not taken into account, so be careful with block options like rotation and mirror. Distort works on all active layers and on selected objects in a layer.

Parameters:
- **x** - a multiplication value, X distort value
- **y** - a multiplication value, Y distort value
- **pCenter_x** (X coordinate) the center point will be used
- **pCenter_y** (Y coordinate) the center point will be used

Returns:
- true if distort has a problem, if no problem then returns false.

boolean distort (double x, double y, Point pCenter)
Distort - distort the X and/or Y coordinates of the objects of a layer. Only the flash and draw coordinates are affected, not the pad sizes. For block apertures the data inside the block and the block flash points are distorted. The block options are not taken into account, so be careful with block options like rotation and mirror. Distort works on all active layers and on selected objects in a layer.

Parameters:
- \(x\) - a multiplication value, X distort value
- \(y\) - a multiplication value, Y distort value
- \(pCenter\) the center point will be used

Returns:
true if distort has a problem, if no problem then returns false.

```java
boolean distort ( double x,
                double y)
```

Distort - distort the X and/or Y coordinates of the objects of a layer. Only the flash and draw coordinates are affected, not the pad sizes. For block apertures the data inside the block and the block flash points are distorted. The block options are not taken into account, so be careful with block options like rotation and mirror. Distort works on all active layers and on selected objects in a layer.

Parameters:
- \(x\) - a multiplication value, X distort value
- \(y\) - a multiplication value, Y distort value

Returns:
true if distort has a problem, if no problem then returns false.

```java
void doActiveFunction ( )
```

DO function Execute current function using values entered in the Numbers Example:

```java
setInPlane(1,1);
doMove(Point(100,200));
doActiveFunction();
doActiveFunction();
doActiveFunction();
doActiveFunction();
doActiveFunction();
doCancelActiveFunction();
```

See also:
doMove(Upoint)
doCopy(Upoint)
doCancelActiveFunction()

```java
void doCancelActiveFunction ( )
```

Cancel active function Resets current "Do" button function in the Numbers

See also:
doActiveFunction()
void doCopy (double offset_x,
 double offset_y)

Copy using parameters. doCopy respects current direction setting. **Example:**

```
setInPlane(1,1);
direction("");
copy(100,200);
doCopy(100,200);
doCopy(100,200);
direction("h");
copy(100,200);
doCopy(100,200);
doCopy(100,200);
direction("v");
copy(100,200);
doCopy(100,200);
doCopy(100,200);
```

Parameters:

- **offset_x** (X coordinate) offset vector

See also:

- copy(Upoint)
- direction(String)
- doActiveFunction()
- doCancelActiveFunction()

Parameters:

- **offset_y** (Y coordinate) offset vector

See also:

- copy(Upoint)
- direction(String)
- doActiveFunction()
- doCancelActiveFunction()

void doCopy (Point offset)

Copy using parameters. doCopy respects current direction setting. **Example:**

```
setInPlane(1,1);
direction(""");
copy(100,200);
doCopy(100,200);
doCopy(100,200);
direction("h");
copy(100,200);
doCopy(100,200);
doCopy(100,200);
direction("v");
copy(100,200);
doCopy(100,200);
doCopy(100,200);
```
Parameters:

- **offset** offset vector

See also:

- copy(Upoint)
- direction(String)
- doActiveFunction()
- doCancelActiveFunction()

```java
void doMove ( double offset_x,
              double offset_y
          )
```

Move using parameters. doMove respects current direction setting. **Example:**

```java
setInPlane(1,1);
direction("");
move(100,200,false);
doMove(100,200);
doMove(100,200);

direction("h");
move(100,200,false);
doMove(100,200);
doMove(100,200);

direction("v");
move(100,200,false);
doMove(100,200);
doMove(100,200);
```

Parameters:

- **offset_x** (X coordinate) offset vector

See also:

- move(Upoint, boolean)
- direction(String)
- doActiveFunction()
- doCancelActiveFunction()

Parameters:

- **offset_y** (Y coordinate) offset vector

See also:

- move(Upoint, boolean)
- direction(String)
- doActiveFunction()
- doCancelActiveFunction()

```java
void doMove ( Point offset
            )
```

Move using parameters. doMove respects current direction setting. **Example:**
Parameters:
 offset offset vector

See also:
 move(Upoint, boolean)
 direction(String)
 doActiveFunction()
 doCancelActiveFunction()

void doOption (String **sOption)**

Sets the current operation mode

Parameters:
 sOption - "sel" or "all" or "selall"

String doOption ()

Gets the current operation mode

Returns:
 mode ("sel" or "all" or "selall")

void doRemoveAttribute (boolean **jobAttr,
 boolean **layAttr**,
 boolean **apeAttr**,
 boolean **objAttr**)**

remove all attributes from job, layer, aperture, object

Parameters:
 jobAttr if true remove attributes for job
 layAttr if true remove attributes for layer
 apeAttr if true remove attributes for aperture
 objAttr if true remove attributes for object
void drag (double clickp_x,
 double clickp_y,
 double dRadius,
 double offset_x,
 double offset_y,
 double rect_xmin,
 double rect_ymin,
 double rect_xmax,
 double rect_ymax)

Drag Pad/track to new location

Parameters:
 clickp_x (X coordinate) Pad flashpoint / track endpoint
 clickp_y (Y coordinate) Pad flashpoint / track endpoint
 dRadius radius around click point where must be an object
 offset_x (X coordinate) Offset of new pad flashpoint / track endpoint
 offset_y (Y coordinate) Offset of new pad flashpoint / track endpoint
 rect_xmin (left boundary of rectangle) Rectangle of selection - all elements inside will be dragged
 rect_ymin (bottom boundary of rectangle) Rectangle of selection - all elements inside will be dragged
 rect_xmax (right boundary of rectangle) Rectangle of selection - all elements inside will be dragged
 rect_ymax (top boundary of rectangle) Rectangle of selection - all elements inside will be dragged

void drag (Point clickp,
 double dRadius,
 Point offset,
 Rectangle rect)

Drag Pad/track to new location

Parameters:
 clickp Pad flashpoint / track endpoint
 dRadius radius around click point where must be an object
 offset Offset of new pad flashpoint / track endpoint
 rect Rectangle of selection - all elements inside will be dragged

void drag (double clickp_x,
 double clickp_y,
 double dRadius,
 double offset_x,
 double offset_y)

Drag Pad/track to new location

Parameters:
 clickp_x (X coordinate) Pad flashpoint / track endpoint
 clickp_y (Y coordinate) Pad flashpoint / track endpoint
 dRadius radius around click point where must be an object
void drag (Point clickp, double dRadius, Point offset)

Drag Pad/track to new location

Parameters:

- **clickp**: Pad flashpoint / track endpoint
- **dRadius**: radius around click point where must be an object
- **offset**: Offset of new pad flashpoint / track endpoint

void dragAngle (double pt_x, double pt_y, double dRadius, double dist, double mlen, boolean bUseLimit)

Drag track angle corresponds to: Transform Objects - BGA Tracks - Drag Angle

Parameters:

- **pt_x**: (X coordinate) Start point of drag
- **pt_y**: (Y coordinate) Start point of drag
- **dRadius**: radius around click point where must be an object
- **dist**: Drag distance
- **mlen**: Minimum track length
- **bUseLimit**: use limit for move data

void dragAngle (Point pt, double dRadius, double dist, double mlen, boolean bUseLimit)

Drag track angle corresponds to: Transform Objects - BGA Tracks - Drag Angle

Parameters:

- **pt**: Start point of drag
- **dRadius**: radius around click point where must be an object
- **dist**: Drag distance
- **mlen**: Minimum track length
- **bUseLimit**: use limit for move data
void dragAngle (double pt_x,
 double pt_y,
 double dRadius,
 double dist,
 double mlen)

Drag track angle corresponds to: Transform Objects - BGA Tracks - Drag Angle

Parameters:
pt_x (X coordinate) Start point of drag
pt_y (Y coordinate) Start point of drag
dRadius radius around click point where must be an object
dist Drag distance
mlen Minimum track length

void dragAngle (Point pt,
 double dRadius,
 double dist,
 double mlen)

Drag track angle corresponds to: Transform Objects - BGA Tracks - Drag Angle

Parameters:
pt Start point of drag
dRadius radius around click point where must be an object
dist Drag distance
mlen Minimum track length

void dragLayer (String prevClass, String newClass, int prevPosition, int newPosition, boolean duplicate)

Drag Layer, optionally with duplicate

Parameters:
prevClass "layer" or "extra" or "drill"
newClass "layer" or "extra" or "drill"
prevPosition index of the layer. For the "drill" layers it is from 1 to the number of drill layers. For the "layer" and "extra" it is from 1 to the number of all layers.
newPosition index of the new layer. For the "drill" layers it is from 1 to the number of drill layers. For the "layer" and "extra" it is from 1 to the number of all layers.
duplicate true makes exact copy of the original layer
Line dragLine (String sLabel)

Wait for user drag **Line**. It needs Ucam GUI. The function pauses script execution and waits for user interaction.

Parameters:
- *sLabel* Label in information dialog

Returns:
- **Line** dragged by user.

Exceptions:
- *AbortException* after user abort

Rectangle dragRectangle (String sLabel)

Wait for user drag **Rectangle**. It needs Ucam GUI. The function pauses script execution and waits for user interaction.

Parameters:
- *sLabel* Label in information dialog

Returns:
- **Rectangle** dragged by user.

Exceptions:
- *AbortException* after user abort

void drawLastPlanesInFront (boolean bDo)

Changes the drawing order of the planes. Planes 6-11 are placed in front of planes 1-5, while it is normally otherways.

Parameters:
- *bDo* A flag indicating that this should happen, or should be undone.

void drawSlots (String sDPFApeRef, double dTolerance, String sDPFSlotApe)

Replaces defined slots according to the given DPF aperture definition and tolerance with new aperture definition

Example:
```
setMode("selall", "mil", "no");
drawSlots("208=REC,110,90", 0.1, "215=CIR,90");
drawSlots("208=REC,110,90", 0.1, "215=CIR,90");
```

Parameters:
- *sDPFApeRef* the DPF aperture definition - reference for search
- *dTolerance* the tolerance for searching
- *sDPFSlotApe* the DPF aperture definition - the new slot aperture
void drawSlotsSelect (String sDPFApe, double dTolerance)

Selects slots according to the given DPF aperture definition and tolerance

Example:
```java
setMode("selall", "mil", "no");
selectSlots("208=REC,110,90", 0.1);
```

Parameters:
- `sDPFApe` the DPF aperture definition
- `dTolerance` the tolerance for searching

void drillMapReplace (String sSymbolFilePath, ObjectList oMappingTable)

method Replace from Drill Map dialog

Parameters:
- `sSymbolFilePath` full path to Symbol dpf file
- `oMappingTable` order of replaced apertures - see example

Example of order (2,0,1):
- the 1st drill aperture will be replaced by the 2nd aperture from symbols dpf file
- the 2nd drill aperture will not be replaced, index to symbols dpf file is 0 (zero)
- the 3rd drill aperture will be replaced by the 1st aperture from symbols dpf file

void DSAOIAlignmentApply ()

Method simulates Alignment Apply button press

void DSAOIAlignmentDetect (String sMachineType, String sObjectRestrictions, boolean bPositive, boolean bNegative, double dMinimumSize, double dMaximumSize)

Method simulates Detect button press. Detects alignment points in the active layers

Parameters:
- `sMachineType` The selected machine type used to determine the parameters
- `sObjectRestrictions` A specification for the object restrictions
- `bPositive` Allow positive objects as alignment points. Only used when a shape is defined
bNegative
Allow negative objects as alignment points. Only used when a shape is defined

dMinimumSize
The minimum size of the alignment point. (-1 means not active)

dMaximumSize
The maximum size of the alignment point. (-1 means not active)

boolean DSAOIApply()

Method simulates Apply button press

Returns:
true if the apply succeeded, false if not. The apply will not succeed if the fields Minimum Line, Minimum Space or Thickness are <= 0

void DSAOIAreaDetection(
boolean detectImportantLine,
boolean detectImportantSpace,
boolean detectImportantClearance,
boolean detectImportantDrill,
boolean detectImportantFutureDrill,
boolean detectImportantMaskOpenings,
boolean detectProhibitCopper,
boolean detectProhibitSpace,
boolean detectProhibitNonfunctionalCopper,
ObjectList importantLineWidth,
Object[] importantSpaceWidth,
double importantClearanceWidth,
double importantDrillSpreadValue,
double prohibitLineWidth,
double prohibitSpaceWidth,
double minSliverSize,
String pathStrategy,
boolean mergeOutput,
boolean clipProhibitWithImportant,
boolean outputNormalAreas,
boolean maskPolarity,
boolean paintedArea,
double paintedAreaValue,
String PCBName,
boolean outputDrillBinary)

Auto-detect `important` and `prohibit` areas for the current job

Parameters:
- **detectImportantLine** whether or not to detect important areas in copper
- **detectImportantSpace** whether or not to detect important areas in space
- **detectImportantClearance** whether or not to detect clearance around drill holes
- **detectImportantDrill** whether or not to add actual drill holes to the important areas
- **detectImportantFutureDrill** whether or not to add future drill holes to the important areas
- **detectImportantMaskOpenings** whether or not to add solder mask openings as important areas
- **detectProhibitCopper** whether or not to detect prohibit areas in copper
- **detectProhibitSpace** whether or not to detect prohibit areas in space
auto-detect `important' and `prohibit' areas for the current job

Parameters:

`detectImportantLine' whether or not to detect important areas in copper
`detectImportantSpace' whether or not to detect important areas in space
void DSAOIAreaDetection (boolean detectImportantLine,
boolean detectImportantSpace,
boolean detectImportantClearance,
boolean detectImportantDrill,
boolean detectImportantFutureDrill,
boolean detectImportantMaskOpenings,
boolean detectProhibitCopper,
boolean detectProhibitSpace,
boolean detectProhibitNonfunctionalCopper,
ObjectList importantLineWidth,
Object[] importantSpaceWidth,
double importantClearanceWidth,
double prohibitsDrillSpreadValue,
double prohibitLineWidth,
double prohibitSpaceWidth,
double minSliverSize,
String pathStrategy,
boolean mergeOutput,
boolean clipProhibitWithImportant,
boolean outputNormalAreas,
boolean maskPolarity,
String PCBName
)

Auto-detect `important' and `prohibit' areas for the current job
Parameters:

detectImportantLine whether or not to detect important areas in copper
detectImportantSpace whether or not to detect important areas in space
detectImportantClearance whether or not to detect clearance around drill holes
detectImportantDrill whether or not to add actual drill holes to the important areas
detectImportantFutureDrill whether or not to add future drill holes to the important areas
detectImportantMaskOpenings whether or not to add solder mask openings as important areas
detectProhibitCopper whether or not to detect prohibit areas in copper
detectProhibitSpace whether or not to detect prohibit areas in space
detectProhibitNonfunctionalCopper whether or not to add non-functional copper (NWP) as mask areas
importantLineWidth maximum reported line width classes in important areas
importantSpaceWidth maximum reported space width in important areas
importantClearanceWidth maximum reported copper to drill hole clearance value in important areas
importantDrillSpreadValue add this ring around the drill holes reported as important areas
prohibitLineWidth maximum reported line width in prohibit areas
prohibitSpaceWidth maximum reported space width in prohibit areas
minSliverSize minimum size for slivers
pathStrategy how to report functional copper where there are multiple paths ("thickest" or "all")
mergeOutput whether or not to merge all important and all prohibit layers into just two layers
clipProhibitWithImportant whether or not to clip the prohibit areas with the important areas
outputNormalAreas whether or not to create a layer containing the areas which are neither important or prohibit
maskPolarity if true, mask openings are positive; if false, resist is positive
PCBName the name of the PCB block to use or null if none specified

void DSAOIAreaDetection (boolean detectImportantLine,
 boolean detectImportantSpace,
 boolean detectImportantClearance,
 boolean detectImportantDrill,
 boolean detectImportantFutureDrill,
 boolean detectImportantMaskOpenings,
 boolean detectProhibitCopper,
 boolean detectProhibitSpace,
 boolean detectProhibitNonfunctionalCopper,
 ObjectList importantLineWidth,
 double importantSpaceWidth,
 double importantClearanceWidth,
 double importantDrillSpreadValue,
 double prohibitLineWidth,
 double prohibitSpaceWidth,
 double minSliverSize,
 String pathStrategy,
 boolean mergeOutput,
 boolean clipProhibitWithImportant,
 boolean outputNormalAreas,
 boolean maskPolarity,
 String PCBName)
Auto-detect 'important' and 'prohibit' areas for the current job

Parameters:
- `detectImportantLine`: whether or not to detect important areas in copper
- `detectImportantSpace`: whether or not to detect important areas in space
- `detectImportantClearance`: whether or not to detect clearance around drill holes
- `detectImportantDrill`: whether or not to add actual drill holes to the important areas
- `detectImportantFutureDrill`: whether or not to add future drill holes to the important areas
- `detectImportantMaskOpenings`: whether or not to add solder mask openings as important areas
- `detectProhibitCopper`: whether or not to detect prohibit areas in copper
- `detectProhibitSpace`: whether or not to detect prohibit areas in space
- `detectProhibitNonfunctionalCopper`: whether or not to add non-functional copper (NWP) as mask areas
- `importantLineWidth`: maximum reported line width classes in important areas
- `importantSpaceWidth`: maximum reported space width in important areas
- `importantClearanceWidth`: maximum reported copper to drill hole clearance value in important areas
- `importantDrillSpreadValue`: add this ring around the drill holes reported as important areas
- `prohibitLineWidth`: maximum reported line width in prohibit areas
- `prohibitSpaceWidth`: maximum reported space width in prohibit areas
- `minSliverSize`: minimum size for slivers
- `pathStrategy`: how to report functional copper where there are multiple paths ("thickest" or "all")
- `mergeOutput`: whether or not to merge all important and all prohibit layers into just two layers
- `clipProhibitWithImportant`: whether or not to clip the prohibit areas with the important areas
- `outputNormalAreas`: whether or not to create a layer containing the areas which are neither important or prohibit
- `maskPolarity`: if true, mask openings are positive; if false, resist is positive
- `PCBName`: the name of the PCB block to use or null if none specified

```java
void DSAOIAreasApply ()

Method simulates Areas Apply button press
```

```java
void DSAOIDetectRectangularArea ( double dMargin,
                                    String sBlockMode,
                                    String sPCBName,
                                    String sReferenceLayerName,
                                    boolean bLsSingleLevel,
                                    boolean bLsInspection,
                                    boolean bLsPmiP1,
                                    boolean bLsPmiP2,
                                    boolean bLsDrcP1,
                                    boolean bLsDrcP2 )
```

Automatically generate inspection areas for all active layers

Parameters:
- `dMargin`: The found areas are spread with the given margin value
- `sBlockMode`: Defines the reference layer for block detection. Possible values are
void DSAOILayerList ()

Method simulates LayerList button press

void DSAOILayerListAreaApply ()

Method simulates LayerList Area Apply button press

void DSAOILayerListAreaOutput ()

Method simulates LayerList Area Output button press

void DSAOILayerListAreaSelect ()

Method simulates LayerList Area Select button press

void DSAOILayerListGroupValue (String sNewValue)

Specifies Group in LayerList

Parameters:
 sNewValue new value of the group

void DSAOILayerListRowDeselect (int IndexFrom, int IndexTo)

Method deselects rows in the LayerList between indexes (the first line has index 1)

Parameters:
 IndexFrom begin row index
 IndexTo end row index
void DSAOI.LayerListRowDeselect (int iRow)

Method deselects row in the LayerList (the first line has index 1)

Parameters:
 iRow

void DSAOI.LayerListRowSelect (int iIndexFrom, int iIndexTo)

Method selects rows in the LayerList between indexes (the first line has index 1)

Parameters:
 iIndexFrom begin row index
 iIndexTo end row index

void DSAOI.LayerListRowSelect (int iRow)

Method selects row in the LayerList (the first line has index 1)

Parameters:
 iRow

boolean DSAOI.LoadLayerListProfile (String pro)

Load a DS PI layer list profile

Parameters:
 pro profile

Returns:
 false if the profile was not loaded or true otherwise

boolean DSAOI.Output ()

Perform DS PI output of the red layer and its back layer, if it is active

Returns:
 false if a problem was detected during output or true otherwise

void DSAOI.pinpointDetection (double dStep, double dInfinity, String sOutputFilePath)

VHS API Specification
March 2018
Page 147 of 393
Parameters:

- **dStep**: step between pinpoint locations
- **dInfinity**: value bigger than specified are not important
- **sOutputFilePath**: the complete file path including the file name

```java
void DSAOIpinpointDetection ( double dStep,
                             double dInfinity,
                             String sPCBName,
                             String sOutputFilePath,
                             String sLocation
)
```

Parameters:

- **dStep**: step between pinpoint locations
- **dInfinity**: value bigger than specified are not important
- **sPCBName**: PCB name, can be "$" (complete layer), null or "" ("deepest level"), single PCB name or list of PCBs separated by ";"
- **sOutputFilePath**: the complete file path including the file name
- **sLocation**

```java
void DSAOIPositionApply ( )
```

Method simulates LayerList Area Apply button press

```java
void DSAOISetApplyToBackLayers ( boolean bValue )
```

Sets value of the 'Apply To Back Layers' check box

Parameters:

- **bValue**: value can be true (checked) or false (unchecked)

```java
void DSAOISetApplyToFrontLayers ( boolean bValue )
```

Sets value of the 'Apply To Front Layers' check box

Parameters:

- **bValue**: value can be true (checked) or false (unchecked)

```java
void DTMCalculate ( String sPlatingType,
                    String sToleranceScript
)
```

Calculates drill sizes according to given plating type and given tolerance VHS script
Parameters:
- $sPlatingType$ plating type, one from the Tooltable name
- $sToleranceScript$ tolerance script file name

boolean DTMCreateSymbolDrawing ()

Creates layer with symbols and symbol table

Returns:
true if the Symbol drawings successfully created, otherwise false

boolean DTMLoadData ()

Loads necessary data from drill layers and sets "uCustomerDiameter" attributes to holes

Returns:
boolean Activate the SDTMFrame UpdateDpfButton

void DTLoadToleranceFile (String $sToleranceFileName$)

Loads tolerance file

Parameters:
- $sToleranceFileName$ Smart DrillTool Manager tolerance file name

void DTMRemoveAttributes ()

Removes all attributes from drills

void DTMSaveDataToAttributes (String $sJobName$)

Saves the table data to attributes

Parameters:
- $sJobName$

void DTMUpdateDPF (String $sJobName$)

Moves the plated objects to the plated layer and the unplated objects to the unplated layer

Parameters:
- $sJobName$

void duplicateAperture ()
Aperture Manager: Duplicates current Aperture

```java
void duplicateLayer ( String layName,
    String newName
)
```

Duplicate Layer

Parameters:

- `layName` Name of any layer (layer,extra or drill)
- `newName` Name of duplicated layer

```java
void dwAnnotate ( String annotationLayerName,
    String sChipID
)
```

The annotation layer describes positions of the DW Shots (chips) on panel. Each aperture in annotation layer has one flash point corresponding to one chip flash point in layer in plane 1. The aperture attribute `dwShotAnnotation` contains chip ID and position output in File A.

Parameters:

- `annotationLayerName` the layer in job containing annotations
- `sChipID` the chip defining block name

```java
void dwAnnotate ( String annotationLayerName )
```

The annotation layer describes positions of the DW Shots (chips) on panel. Each aperture in annotation layer has one flash point corresponding to one chip flash point in layer in plane 1. The aperture attribute `dwShotAnnotation` contains chip ID and position output in File A.

Parameters:

- `annotationLayerName` the layer in job containing annotations

```java
void dwApplyTransform ( String sResultFilePath )
```

The Result file is the File B with real chip transformations. The method applies the transformations from the File B to layer in plane 1.

Parameters:

- `sResultFilePath` full result File B path

```java
void editAperture ( int iApeNum,
    String sApeName,
    String sApeDef
)
```

Aperture Manager: Edit current Aperture
Parameters:

- **iApeNum** (new) Number of the Aperture
- **sApeName** (new) Name of the Aperture
- **sApeDef** (new) DPF style Definition String of Aperture, e.g. "REC,1.905,0.3048"

`void emptyClipboard()`
Empty clipboard

`void enlargePads(String absRel, double aVal, boolean bExclcon, boolean bUseBGA)`
Enlarge (stretch) pads with absolute/relative value corresponds to: Transform Objects - BGA Pads - Enlarge
Parameters:

- **absRel** Abs for absolute, Rel for relative
- **aVal** Enlarge value
- **bExclcon** If true, contours will be excluded
- **bUseBGA** If true, only objects with object attribute uBGA will be enlarged

`String envString(String name)`
Returns Environmental variable
Parameters:

- **name** e.g. "TEMP"
Returns:

the value of the given Environmental variable

`void equalizeTrackSpace()`
Equalize track space corresponds to: Transform Objects - BGA Tracks - Equalize Space

`void etchCompensation(boolean bUseExcludeAreas, boolean bCreateLayerBackup, boolean bShowLayerBackup, int iOutStyle, boolean bAsymmetricPadTrackComp, ObjectList arrPrefOffset)`
Etch Compensation without UseCompensateAreas -> reduced parameter set
Parameters:
- **bUseExcludeAreas**: Use layer with 'Etch Exclusion' areas
- **bCreateLayerBackup**: Copy all active layers for reference
- **bShowLayerBackup**: Show reference layer, if existing
- **iOutStyle**:
 - 0: default, 1: Output contour on top of original, 2: Output contour replace original
- **bAsymmetricPadTrackComp**: Asymmetric pad track compensation
- **arrPrefOffset**: parameter array for Preferred Offset:
 - String Offset Table
 - double Minimum Clearance
 - double for pads
 - double for tracks

```java
void etchCompensation ( boolean bUseExcludeAreas,
                        boolean bUseCompensateAreas1,
                        boolean bUseCompensateAreas2,
                        boolean bCreateLayerBackup,
                        boolean bShowLayerBackup,
                        int iOutStyle,
                        boolean bAsymmetricPadTrackComp,
                        ObjectList arrPrefOffset,
                        Object[] arrCompLay1,
                        Object[] arrCompLay2 )
```

Etch Compensation

Parameters:
- **bUseExcludeAreas**: Use layer with 'Etch Exclusion' areas
- **bUseCompensateAreas1**: Use compensation areas of lay 1 -> requires parameters in arrCompLay1
- **bUseCompensateAreas2**: Use compensation areas of lay 2 -> requires parameters in arrCompLay2
- **bCreateLayerBackup**: Copy all active layers for reference
- **bShowLayerBackup**: Show reference layer, if existing
- **iOutStyle**:
 - 0: default, 1: Output contour on top of original, 2: Output contour replace original
- **bAsymmetricPadTrackComp**: Asymmetric pad track compensation
- **arrPrefOffset**: parameter array for Preferred Offset:
 - String Offset Table
 - double Minimum Clearance
 - double for pads
 - double for tracks

- **arrCompLay1**: parameter array for compensation areas of lay 1
 - String Offset Table
 - double Minimum Clearance
 - double for pads
 - double for tracks

- **arrCompLay2**: parameter array for compensation areas of lay 2
 - String Offset Table
 - double Minimum Clearance
void expandArcs ()
expandArcs Replaces arcs by draws in a job. The arcs themselves are removed.

void expandBlock ()
expandBlock Expands all data of block apertures in a job. The block apertures themselves are removed from the aperture list.

void expandNibble (double overlapValue, double pitchValue, boolean useOverlap)
Expands elements to nibbles.

Parameters:
- overlapValue: The overlap value of the nibbles
- pitchValue: The pitch value of the nibbles
- useOverlap: true if use the overlapValue, false if use the pitchValue

void expandText ()
expandText Changes all text apertures in layers to flashes of each character with a complex aperture. This allows editing of 1 character and spread and choke of characters.

void expandTrueObjects ()
expandTrueObjects Removes flashes, draws, arcs, regions that have a subobject and replaces them with their subobject.

void expandVtx ()
expandVtx Expands all vector text data in a job.

void externalLinkManagerCheck ()
The button Check on External Link Manager press
void filletJoin (double pt_x,
 double pt_y,
 double dis)

Rounds the junction of two draws.

Parameters:
 pt_x (X coordinate) The junction of the two draws
 pt_y (Y coordinate) The junction of the two draws
 dis Radius value of fillet (round)

void filletJoin (Point pt,
 double dis)

Rounds the junction of two draws.

Parameters:
 pt The junction of the two draws
 dis Radius value of fillet (round)

void fillPolygon (boolean bDirection)

Parameters:
 bDirection direction

void fillPolygonCCW()

CCW fill polygon

void fillPolygonCW()

CW fill polygon

void fillWithAngledPattern (String shape,
 double size,
 double pitch,
 double angle)

Fills selected apertures with angled pattern

Parameters:
 shape Dot shape ("circle", "square" and "diamond")
 size Dot size
pitch Pitch between dots
angle Pattern angle

See also:
HyperShell::PATTERN_ANGLED_CIRCLE
HyperShell::PATTERN_ANGLED_SQUARE
HyperShell::PATTERN_ANGLED_DIAMOND

```java
void fillWithPatternPads ( String sKind,
    boolean bKeepEdge,
    double pGridOrigin_x,
    double pGridOrigin_y,
    double pGridStep_x,
    double pGridStep_y )
```

Replaces the selected contour with the choose pattern - fill with Pads

Parameters:

- **sKind** odd - 1 active layer: the contours are filled with a pattern which alternates between the pads on the grid. The bottom left grid point remains contour free. - More than 1 active layers: the pattern alternates from top to bottom, starting with an Odd pattern for the upper active layer. Only active layers are considered. even - 1 active layer: the contours are filled with a pattern which alternates between the pads on the grid. The bottom left grid point of the contour is filled. - More than 1 active layers: the pattern alternates from top to bottom, starting with an Even pattern for the upper active layer. Only the active layers are considered. full - Patterns every layer.
- **bKeepEdge** - if true keeps edge
- **pGridOrigin_x** (X coordinate) - origin grid
- **pGridOrigin_y** (Y coordinate) - origin grid
- **pGridStep_x** (X coordinate) - step grid
- **pGridStep_y** (Y coordinate) - step grid

```java
void fillWithPatternPads ( String sKind,
    boolean bKeepEdge,
    Point pGridOrigin,
    Point pGridStep )
```

Replaces the selected contour with the choose pattern - fill with Pads

Parameters:

- **sKind** odd - 1 active layer: the contours are filled with a pattern which alternates between the pads on the grid. The bottom left grid point remains contour free. - More than 1 active layers: the pattern alternates from top to bottom, starting with an Odd pattern for the upper active layer. Only active layers are considered. even - 1 active layer: the contours are filled with a pattern which alternates between the pads on the grid. The bottom left grid point of the contour is filled. - More than 1 active layers: the pattern alternates from top to bottom, starting with an Even pattern for the upper active layer. Only the active layers are considered. full - Patterns every layer.
- **bKeepEdge** - if true keeps edge
- **pGridOrigin** - origin grid
- **pGridStep** - step grid
void fillWithPatternStarburst (int iSegments,
 String sKind,
 int dBlack,
 boolean bWithCenter,
 double pCenter_x,
 double pCenter_y,
 boolean bKeepEdge,
 double dEdgeWith
)

Replaces the selected contour with the choose pattern - fill the venting pattern with a starburst.

Parameters:

- **iSegments**: The number of segments to be used.
- **sKind**: odd - Determines the start position of the segments. The first black segment lies on the positive X-axis. even - Determines the start position of the segments. The first white segment lies on the positive X-axis. alternate - Fills the selected layers alternately from top to bottom, starting with an even pattern for the upper active layer. Only the active layers are considered.

- **dBlack**: Determines the relative portion of black and white areas for the filling pattern.

- **bWithCenter**: Defines the center point of the starburst.

- **pCenter_x** (X coordinate) - the center point

- **pCenter_y** (Y coordinate) - the center point

- **bKeepEdge**: if true keeps edge

- **dEdgeWith**: - edge with

void fillWithPatternStarburst (int iSegments,
 String sKind,
 int dBlack,
 boolean bWithCenter,
 Point pCenter,
 boolean bKeepEdge,
 double dEdgeWith
)

Replaces the selected contour with the choose pattern - fill the venting pattern with a starburst.

Parameters:

- **iSegments**: The number of segments to be used.

- **sKind**: odd - Determines the start position of the segments. The first black segment lies on the positive X-axis. even - Determines the start position of the segments. The first white segment lies on the positive X-axis. alternate - Fills the selected layers alternately from top to bottom, starting with an even pattern for the upper active layer. Only the active layers are considered.

- **dBlack**: Determines the relative portion of black and white areas for the filling pattern.

- **bWithCenter**: Defines the center point of the starburst.

- **pCenter**: - the center point

- **bKeepEdge**: if true keeps edge

- **dEdgeWith**: - edge with
void fillWithPatternTracks (String \textit{sPattern},
 double \textit{dStep},
 double \textit{dWidth},
 double \textit{dRotation},
 boolean \textit{bKeepEdge}
)

Replaces the selected contour with the choose pattern - fill the venting pattern with tracks

\textbf{Parameters:}
\begin{itemize}
 \item \textit{sPattern} - Choose the required pattern
 \item \textit{dStep} - Defines the step between 2 lines.
 \item \textit{dWidth} - Defines the width of the lines (width < step).
 \item \textit{dRotation} - Defines the rotation for the pattern (CCW).
 \item \textit{bKeepEdge} - if true keeps edge
\end{itemize}

int fillWithVectors (double \textit{dOverlap},
 double \textit{dDiameter},
 int \textit{iApeCount},
 int \textit{iApeNum},
 String \textit{sFillOpt}
)

Fills the specified apertures with circular draws.

\textbf{Parameters:}
\begin{itemize}
 \item \textit{dOverlap} Specifies the overlap for the apertures.
 \item \textit{dDiameter} Specifies the diameter of the fill apertures. The first aperture has a diameter \textit{dDiameter}. The n-th has a diameter n*\textit{dDiameter}.
 \item \textit{iApeCount} The number of fill apertures.
 \item \textit{iApeNum} The number of the first fill aperture.
 \item \textit{sFillOpt} Specifies which kind of apertures should be filled up. This can be any combination of "com", "box", "con" and "txt". Boxes, complexes and text apertures are replaced by a block aperture.
\end{itemize}

\textbf{Returns:}
number of errors

void findSections (String \textit{szOptions})

Find job sections

\textbf{Parameters:}
\begin{itemize}
 \item \textit{szOptions} options ("sel" or "all" or "selall")
\end{itemize}

void findSlots ()

Find "IPCATG" slots according keys that defines them.
int findStandardShape (double dTolerance,
 String szOpt,
 String szAction
)

Find standard shapes within COM and CON apertures on layer

Parameters:
 dTolerance tolerance
 szOpt options "con,com,blo:cir,rec,box,the" con, com or blo means what to consider (blo means
go into block definitions), cir and rec means what to replace with, you can also use * as
joker -> "*:rec,cir, box" or "*::*" or "con,com:*"
 szAction ("select", "replace"), in case of select all regions and/or complexes will be assigned
attribute "uStandardShape" with value standard shape definiton

Returns:
 amount of find/replaced apertures, 0 when no, -1 on error

void flashMakerDeleteComplex ()

Deletes all complexes from founded list of painted objects. FlashMaker Delete Complex

void flashMakerDeselectComplex ()

Deselects all complexes from founded list of painted objects. FlashMaker Deselect Complex

void flashMakerFind ()

Finds all painted objects that are suitable to replace with flashes. FlashMaker Find button

void flashMakerFindStandardShapes (Uxjob oJob)

Finds all REGs and COMs that are suitable to replace with flashes of standard shapes (CIR and REC).
FlashMaker Find button for Con&Com tab

Parameters:
 oJob current job

void flashMakerReplace ()

Replaces all found painted objects with flashes FlashMaker Replace button

void flashMakerReplaceStandardShapes (Uxjob oJob)
Replaces all found planted objects with flashes FlashMaker Replace button

Parameters:

- `oJob` current job

```java
void flashMakerSetup ( double minCutoff,
                      double minSize,
                      double maxSize,
                      boolean useTol,
                      double tol,
                      boolean useMask,
                      boolean deselNonModel
)
```

FlashMaker setup

Parameters:

- `minCutoff` Minimum rounding value for box corners if smaller rounding is found, box will be replaced by rectangle
- `minSize` Minimum x/y size of pads to be replaced. (0 = replace all)
- `maxSize` Maximum x/y size of pads to be replaced
- `useTol` Use a tolerance value (if false, optimal tolerance is used)
- `tol` Tolerance on size of replaced objects
- `useMask` Only look at pads free of soldermask
- `completelyFree` Only look at pads completely free of mask
- `deselNonModel` Finds pads in selected data. Deselects all other objects.
void flipJob (String mirror,
 boolean bFlipBuildup,
 boolean bFlipAttachNone,
 String suffix)

Flip the job buildup

Parameters:

- **mirror**: Either "x", or "y" to mirror the layers.
- **bFlipBuildup**: Either false, or true to flip the job buildup.
- **bFlipAttachNone**: Either false, or true to flip layers of class "extra" and attach "none".
- **suffix**: A suffix that is added to the layer names.

- Flip adds the 'uFlipJob' attribute to the job. It's value is 'x', 'y', 'xy' or 'yx'. Flipping toggles the attribute, i.e. flip x + flip x, results in uFlipJob = "".
- The suffix is toggled, so no _x_x when flipped twice, but the original layer name again.
- PlotParameter Mirror is swapped
- Readable Side is swapped

void forEachApe (String sType)

Do the operations on all apertures of the given type.

Parameters:

- **sType**: it must be on from the following

 - "cir", "rec", "box", "oct", "con", "com", "the", "txt", "blo", "squ" and "don".

Example:

```java
print("JOB NAME " + jobName());  
forEachLayer() {  
   print("\n--- Layer " + layName() + " ---");  
   forEachApe("cir") {  
      String shape = apeShape();  
      print(" Aperture " + apeInfo());  
      print(" outer: " + apeOuter());  
   }  
}
```
} else if (isEqual(shape, "rec") || isEqual(shape, "box")) {
 print(" X size: " + apeXSize());
 print(" Y size: " + apeYSize());
}

void forEachArc ()
Do the operations on all arcs of the current aperture.

void forEachDraw ()
Do the operations on all draws of the current aperture.

void forEachDrill (String sSubClass)
Do the operations on all drill layers of the given subclass.

Parameters:

sSubClass The subclass for the drill layer wanted. If not important specify "". The default subclasses offered by Ucam are "drill", "buried", "blind", "plated", "unplated" and "fixing".

void forEachDrill ()
Do the operations on all drill layers. Example:

print("--- JOB statistics ---");
print("Name: " + jobName());
print("Spec: " + jobSpec());
print("Path: " + jobPath());
print("Customer: " + jobCustomer());
print("Revision: " + jobRevision());
int layerCount = 1;
forEachDrill() {
 print("\n --- Layer " + layerCount++ + " ---");
 print(" Name: " + layName());
 print(" Class: " + layClass());
 print(" Subclass: " + laySubClass());
 print(" Attach: " + layAttach());
 print(" Readable: " + layReadable());
 print(" Reverse: " + layReverse());
}

void forEachExtra (String sSubClass, String sAttach)
Do the operations on all extra layers of the given subclass and attachment.

Parameters:

sSubClass The subclass for the layer wanted. If not important specify "". The default subclasses offered by Ucam are "rout", "silk", "mask", "paste", "exclusion", "netref", "testpoints", "probe" and "guideplate".
sAttach specifies the attachment for "extra" layers. Can be "top", "bottom", "none" or "all".
void forEachExtra (String sSubClass)

Do the operations on all Extra layers of the given subclass.

Parameters:

- **sSubClass** The subclass for the layer wanted. If not important specify "". The default subclasses offered by Ucam are "rout", "silk", "mask", "paste", "exclusion", "netref", "testpoints", "probe" and "guideplate" for extra layers. "drill", "buried", "blind", "plated", "unplated" and "fixing" for drill layers. "outer", "inner" and "mixed" for signal layers.

void forEachExtra ()

Do the operations on all extra layers. **Example:**

```java
print("--- JOB statistics ---");
print("Name: " + jobName());
print("Spec: " + jobSpec());
print("Path: " + jobPath());
print("Customer: " + jobCustomer());
print("Revision: " + jobRevision());
int layerCount = 1;
forEachExtra() {
    print("--- Layer " + layerCount++ + " ---");
    print(" Name: " + layName());
    print(" Class: " + layClass());
    print(" Subclass: " + laySubClass());
    print(" Attach: " + layAttach());
    print(" Readable: " + layReadable());
    print(" Reverse: " + layReverse());
}
```

void forEachFlash ()

Do the operations on all flashes of the current aperture.

void forEachI8Job (String serverName, String dbname, String username, String password, String context, String i8path)

Do the operations on all jobs in the given database context.

Parameters:

- **serverName** * name of the database server
- **dbname** * name of the database to use (usually 'integr8tor')
- **username** * database login
- **password** * database password
- **context** * integr8tor context to use (usually 'autoflow')
- **i8path** * path to your integr8tor installation (parent of the Integr8tor folder)
void forEachInRectangle (Rectangle rect,
 boolean opt)

Do the operation on the objects whose enclosing rectangle overlap the specified rectangle.

Parameters:
 rect The target rectangle.
 opt if true, all the objects which actually overlap the rectangle are found, otherwise all objects whose
 enclosing rectangle overlaps the specified rectangle are found.

void forEachInRectangle (Rectangle rect)

Do the operation on the objects which actually overlap the specified rectangle.

Parameters:
 rect The target rectangle.

Object forEachItem (ObjectList items)

Do the operation on the all items in given Object List.

Example:

```java
int count = 0;
fileName = forEachItem(osGetFileList(chooseDirPath())) { 
    print(fileName);
    count++;
}
print(count + " file(s) in directory.");
```

Parameters:
 items Object List its items will be iterated.

Returns:
 returns each object from given ObjectList in loop

See also:
 osGetFileList(String)
 osGetFileList(String, boolean)
 osGetFileList(String, String, boolean)
 chooseDirPath()

void forEachJobNet ()

Create the net iterator over the all job layers

void forEachLayer (String sClass,
 String sSubClass,
void forEachLayer (String sClass, String sSubClass)

Do the operations on all layers of the given class and subclass.

Parameters:

sClass "layer" or "drill" or "extra"

sSubClass The subclass for the layer wanted. If not important specify "". The default subclasses offered by Ucam are "rout", "silk", "mask", "paste", "exclusion", "netref", "testpoints", "probe" and "guideplate".

sAttach specifies the attachment for "extra" layers. Can be "top", "bottom", "none" or "all".

void forEachLayer (String sClass)

Do the operations on all layer of the given class.

Parameters:

sClass it must be

- "layer" (means signal layers)
- "drill"
- "extra"

void forEachLayer ()

Do the operations on all layers. Example:

```java
print("--- JOB statistics ---");
print("Name: " + jobName());
print("Spec: " + jobSpec());
print("Path: " + jobPath());
print("Customer: " + jobCustomer());
print("Revision: " + jobRevision());
int layerCount = 1;
forEachLayer () {
    print("\n --- Layer " + layerCount++ + " ---");
    print(" Name: " + layName());
    print(" Class: " + layClass());
    print(" Subclass: " + laySubClass());
    print(" Attach: " + layAttach());
    print(" Readable: " + layReadable());
    print(" Reverse: " + layReverse());
}
```
void forEachLayerNet ()

Create the net iterator over the layer in plane 1

void forEachNet (int iNet)

Do the operations on all objects with the given net number on current layer. It goes over the all apertures in current layer. Example:

```java
int objCount = 0;
int net = 20;
forEachNet(net) {
  objSelect("+");
  objCount++;
}
print(objCount + " object(s) with the net number " + net + " selected.");
```

Parameters:

iNet The net number we look for

void forEachObject (String sClass)

Do the operations on all objects of the given class of the current aperture.

Parameters:

sClass it must be on from the following

- Possible values are "arc", "dra", "fla" or "vtx".

void forEachObject ()

Do the operations on all objects of the current aperture. Example:

```java
print("JOB NAME " + jobName());
forEachLayer() {
  print("\n--- Layer " + layName() + " ---");
  forEachApe("cir") {
    print(" Aperture " + apeInfo());
    forEachObject() {
      print(" object(s) with the net number " + net + " selected.");
    }
  }
}
```

void forEachPEInputJob ()

Do the operations on all PanelEditor input jobs of the current PanelJob.

void forEachPEPanelJob ()

Do the operations on all proposed PanelEditor PanelJob of the current solution.
void forEachPESolution ()

Do the operations on all proposed PanelEditor solutions.

void forEachRegion ()

Do the operation on all regions of the Contours.

void forEachSignal (String sSubClass)

Do the operations on all signal layers of the given subclass.

Parameters:

- **sSubClass**: The subclass for the signal layer wanted. If not important specify ".". The default subclasses offered by Ucam are "outer", "inner" and "mixed".

Example:

```java
print("--- JOB statistics ---");
print("Name: " + jobName());
print("Spec: " + jobSpec());
print("Path: " + jobPath());
print("Customer: " + jobCustomer());
print("Revision: " + jobRevision());
int layerCount = 1;
forEachSignal() {
  print("\n --- Layer " + layerCount++ + " ---");
  print(" Name: " + layName());
  print(" Class: " + layClass());
  print(" Subclass: " + laySubClass());
  print(" Attach: " + layAttach());
  print(" Readable: " + layReadable());
  print(" Reverse: " + layReverse());
}
```

void forEachVtxt ()

Do the operations on all vector texts of the current aperture.

int GDSII_outLayer (String filename)

Generate GDSII from the current layer.

See also:

- `GDSII_outLayer(String, String)`
- `GDSII_outLayer(String, String)`

Parameters:

- **filename**
int GDSII_outLayer (String \textit{filename},
 String \textit{options})

Generate GDSII from the current layer.

Parameters:
\begin{itemize}
 \item \textit{filename} ... full specification of the GDSII file to be generated
 \item \textit{options} ... set of options separated by comma (can be empty): 'ARCEXPAND=\text{units}' ... provide precision for the expansion of arcs (like ARCEXPAND=0.01mm) 'DPF' ... in addition to the GDSII file, generate corresponding DPF file too (for verification/debugging purposes) 'PRECISE' ... use all post-merge steps in final contourization (typically substantially slower) 'PIECEWISE' ... flatten cells and write them by pieces instead of providing one big contour for each cell(keep array structure) 'NODATE' ... use the same date (1.1.1970 0:00.00) instead of the current date/time) for all items in the GDSII file 'FEEDBACK' ... show data in various steps of the process in feedback layers (for verification/debugging purposes)
\end{itemize}

Returns:
\begin{itemize}
 \item status (0 if everything was OK)
\end{itemize}

boolean generateContours (double \textit{dGap},
 double \textit{dOverlap})

Generate a Contour (Close)

Parameters:
\begin{itemize}
 \item \textit{dGap} Maximum opening that can be closed
 \item \textit{dOverlap} Maximum overlap that can be deleted
\end{itemize}

Returns:
\begin{itemize}
 \item status
\end{itemize}

boolean generateContoursOnLayer (double \textit{dGap},
 double \textit{dOverlap})

Generate a Contour (Close)

Parameters:
\begin{itemize}
 \item \textit{dGap} Maximum opening that can be closed
 \item \textit{dOverlap} Maximum overlap that can be deleted
\end{itemize}

Returns:
\begin{itemize}
 \item status
\end{itemize}

ObjectList getAttrCategories ()

Returns ObjectList of the all available attribute categories

Returns:
ObjectList getAttrNames (String sCategory)

Return ObjectList of the attribute names in given category

Parameters:
 sCategory Attribute category name

See also:
 getAttrCategories()

Returns:
 ObjectList of the attribute names in given category

ObjectList getAttrValues (String sAttributeName)

Returns ObjectList of the available values for attribute with given name

Parameters:
 sAttributeName Attribute name

Returns:
 ObjectList of the available values for attribute with given name

int getCount (String sType)

Returns number of the faults of the given type

Parameters:
 sType fault type name

Returns:
 Number of the faults of the given type

ObjectList getFaultTypes ()

Returns fault type names in ObjectList

Returns:
 ObjectList of the fault type names

String getFileLastModified (ObjectList fileInfo)

Returns the time that the file denoted by this fileInfo was last modified.

Parameters:
 fileInfo objectlist with the file information

Returns:
String getFileName (ObjectList fileInfo)

Returns the name of the file or directory denoted by this fileInfo.

Parameters:
 fileInfo objectlist with the file information

Returns:
 the name of the file or directory denoted by this fileInfo

See also:
 HSH_base::osFileInfo(String)

String getParent (ObjectList fileInfo)

Returns the pathname string of this fileInfo's parent, or null if this fileInfo does not name a parent directory.

Parameters:
 fileInfo objectlist with the file information

Returns:
 the pathname string of this fileInfo's parent, or null if this fileInfo does not name a parent directory

See also:
 HSH_base::osFileInfo(String)

long getSize (ObjectList fileInfo)

Returns the length of the file denoted by this fileInfo. The return value is unspecified if this fileInfo does not denote a file.

Parameters:
 fileInfo objectlist with the file information

Returns:
 the length, in bytes, of the file denoted by this fileInfo, or 0 otherwise.

See also:
 HSH_base::osFileInfo(String)

Ulayer getLayer (ObjectList layerID)

Get Layer by the given ID

Returns:
 layer matching to the given ID; or null

Parameters:
ObjectList getLayerNames ()

Returns ObjectList containing layer names in ObjectList

Warning: The Object list may contain the same name more then once in case the job has not unique Layer names.

Example: Prints out all layers' name.

```java
int counter = 1;
for (String item : getLayerNames()) {
    System.out.println("Layer name "+(counter++)+" is "+item);
}
```

Returns:
ObjectList with all layer names

ObjectList getLayers ()

Returns structured information about all layers in ObjectList. Items in ObjectList are ObjectLists with layer information in fixed order.

Note: The function is used to get information about layers in job without changes in planes and layer activities.

Item structure:
- info[LAYER_NAME] - Layer name
- info[LAYER_CLASS] - Layer class
- info[LAYER_SUBCLASS] - Layer subclass
- info[LAYER_ATTACHMENT] - Layer attachment
- info[LAYER_INDEX] - Layer index
- info[LAYER_ACTIVITY] - Layer activity
- info[LAYER_APERTURES] - Layer number of apertures or -1 if the layer is not loaded yet.

Example: Prints out all layers' info.

```java
int counter = 1;
for (ObjectList item : getLayers()) {
    System.out.println("---- Layer "+(counter++)+" ----");
    System.out.println("  name "+item.getString(LAYER_NAME));
    System.out.println("  class "+item.getString(LAYER_CLASS));
    System.out.println("  subclass "+item.getString(LAYER_SUBCLASS));
    System.out.println("  attach "+item.getString(LAYER_ATTACHMENT));
    System.out.println("  index "+item.getString(LAYER_INDEX));
    System.out.println("  active "+item.getString(LAYER_ACTIVITY));
    System.out.println("  apertures "+item.getString(LAYER_APERTURES));
}
```

Returns:
ObjectList with layers' info (ObjectList)

See also:
- LAYER_NAME
- LAYER_CLASS
- LAYER_SUBCLASS
- LAYER_ATTACHMENT
- LAYER_INDEX
Rectangle getLocationOnScreen (String sFrameName)

Gives screen location and dimension of this dockable frame.

Parameters:
 sFrameName identification frame given by getFrameID() method of CustomFrame class

Returns:
 location and width and height of the dockable frame as an Rectangle

ObjectList getMode ()

Gets the current operation mode, units and snapmode

Returns:
 array of [{sOption, sUnit, sSnapMode}]

See also:
 com.barco.ets.ucam.hypershell.HyperShell::setMode(String, String, String)

ObjectList getNetAttrNames ()

Return ObjectList of the net attribute names in given Layer

Returns:
 ObjectList of the net attribute names

ObjectList getNetNames ()

Return ObjectList of the net names in current job

Returns:
 ObjectList of the net names

int getNetNumberByClick (double pt_x, double pt_y)

Found object in layer on plane 1 on the coordinates and returns its net number

Parameters:
 pt_x (X coordinate) coordinates, click point
 pt_y (Y coordinate) coordinates, click point

Returns:
 net number a object on the coordinate or 0: no net or -1: no object on the coordinate
int getNetNumberByClick (Point pt)

Found object in layer on plane 1 on the coordinates and returns its net number

Parameters:

* pt coordinates, click point

Returns:

net number a object on the coordinate or 0: no net or -1: no object on the coordinate

Ulayer getNextLayer ()

Returns next layer after current layer in plane 1

Returns:

next layer after current layer in plane 1

ObjectList getODBxxSteps (String sPath)

getODBxxSteps

Parameters:

* sPath path to ODB job

Returns:

two item ObjectArray, the first item is Object List of step names and the second item is Object List of layer names.

int getPlotParam (String sKey, int iDefValue)

Sets the plot parameter.

Parameters:

* sKey The key. Possible values are :
 - "RESOLUTION"
 - "XOFF" (the x offset)
 - "YOFF" (the y offset)
 - "XSCALE" (the x scale)
 - "YSCALE" (the y scale)
 - "SXCEN" (the x scale center)
 - "SYCEN" (the y scale center)
 - "MXCEN" (the x mirror center)
 - "MYCEN" (the y mirror center)
 - "POSITION"
 - MergeJob.PLOT_POSITION_COMBINE_FILL_PERCENTAGE
 - MergeJob.PLOT_POSITION_COMBINE
 - MergeJob.PLOT_POSITION_SINGLE
 - MergeJob.PLOT_POSITION_SINGLE_LEFT_FIXED
 - MergeJob.PLOT_POSITION_SINGLE_RIGHT_FIXED
double getPlotParam (String sKey, double dDefValue)

Sets the plot parameter.

Parameters:

sKey The key. Possible values are:

- "RESOLUTION"
- "XOFF" (the x offset)
- "YOFF" (the y offset)
- "XSCALE" (the x scale)
- "YSCALE" (the y scale)
- "SXCEN" (the x scale center)
- "SYCEN" (the y scale center)
- "MXCEN" (the x mirror center)
- "MYCEN" (the y mirror center)
- "POSITION":
 - MergeJob.PLOT_POSITION_COMBINE_FILL_PERCENTAGE
 - MergeJob.PLOT_POSITION_COMBINE
 - MergeJob.PLOT_POSITION_SINGLE
 - MergeJob.PLOT_TOKENS_LEFT_FIXED
 - MergeJob.PLOT_TOKENS_RIGHT_FIXED
- "ENLARGE_VECTORS_MINIMUMSIZE"
- "ENLARGE_VECTORS_AMOUNT"
- "ENLARGE_FLASH_MINIMUMSIZE"
- "ENLARGE_FLASH_AMOUNT"
- "ENLARGE_CONDUCTOR_SIZE" (Adds a size. Use 0 to remove them all.)
- "ENLARGE_CONDUCTOR_AMOUNT"
- "ENLARGE_COMPLEX"
- "APPLY_ENLARGE_TO" (The value must be one of Ulayer.PLOT_ENLARGE_*)
- "VARIABLE_TEXT_HEIGHT"
- "VARIABLE_TEXT_DIRECTION" (The value must be one of Ulayer.PLOT_VARTEXT_DIRECTION_*)

dDefValue The default value

Returns:

value of the plot parameter or default value
String getPlotParam (String sKey,
 String sDefValue)

Sets the plot parameter.

Parameters:
 sKey The key. Possible values are:
 • "RESOLUTION"
 • "XOFF" (the x offset)
 • "YOFF" (the y offset)
 • "XSCALE" (the x scale)
 • "YSCALE" (the y scale)
 • "SXCEN" (the x scale center)
 • "SYCEN" (the y scale center)
 • "MXCEN" (the x mirror center)
 • "MYCEN" (the y mirror center)
 • "POSITION":
 • MergeJob.PLOT_POSITION_COMBINE_FILL_PERCENTAGE
 • MergeJob.PLOT_POSITION_COMBINE
 • MergeJob.PLOT_POSITION_SINGLE
 • MergeJob.PLOT_POSITION_SINGLE_LEFT_FIXED
 • MergeJob.PLOT_POSITION_SINGLE_RIGHT_FIXED
 • "ENLARGE_VECTORS_MINIMUMSIZE"
 • "ENLARGE_VECTORS_AMOUNT"
 • "ENLARGE_FLASH_MINIMUMSIZE"
 • "ENLARGE_FLASH_AMOUNT"
 • "ENLARGE_CONDUCTOR_SIZE" (Adds a size. Use 0 to remove them all.)
 • "ENLARGE_CONDUCTOR_AMOUNT"
 • "ENLARGE_COMPLEX"
 • "APPLY_ENLARGE_TO" (The value must be one of Ulayer.PLOT_ENLARGE_*)
 • "VARIABLE_TEXT_HEIGHT"
 • "VARIABLE_TEXT_DIRECTION" (The value must be one of Ulayer.PLOT_VARTEXT_DIRECTION_*)

 sDefValue The default value

Returns:
 value of the plot parameter or default value

void grabWidget ()

Prints out the name of the widget that is clicked with the mouse.

void gridAlign (double dStep)

Align to grid

Parameters:
 dStep grid size

void gridCross (boolean bCross)
Sets the grid crosses or lines displayed when the grid is visible

Parameters:
- `bCross`: true show the grid crosses; false show the grid lines

```java
boolean gridCross ()
```

Returns true if the grid crosses are displayed or not

Returns:
- true if the grid crosses are displayed or false if the grid lines are displayed

```java
void gridOrigin ( double ptOrigin_x, double ptOrigin_y )
```

Sets the grid origin to given Point

Parameters:
- `ptOrigin_x` (X coordinate) new grid origin Point
- `ptOrigin_y` (Y coordinate) new grid origin Point

```java
void gridOrigin ( Point ptOrigin )
```

Sets the grid origin to given Point

Parameters:
- `ptOrigin` new grid origin Point

```java
Point gridOrigin ()
```

Returns the current grid origin Point

Returns:
- the current grid origin Point

```java
void gridOutline ( double refPoint_x, double refPoint_y, double offset_x, double offset_y, int repeatX, int repeatY )
```

PCB images in a flat data need to be outlined. We can manually construct outline contour in this (usually the layer in plane 1 and outline extra layer) layer according to a PCB image in reference layer. We mark reference point in PCB image and give an offset of the same reference data in direction X and Y. The repeat parameter
defines a number of outlines in each direction.

Parameters:

- `refPoint_x` (X coordinate) A point where the PCB data are taken as an reference (for alignment)
- `refPoint_y` (Y coordinate) A point where the PCB data are taken as an reference (for alignment)
- `offset_x` (X coordinate) of the outline grid in X and Y
- `offset_y` (Y coordinate) of the outline grid in X and Y
- `repeatX` a number of the outlines in X direction
- `repeatY` a number of the outlines in Y direction

Returns:

Uapeobj can be `null` in case the new outline couldn't be created. The return aperture can be the same in case the target is without rotation. Only the object(flash) is the new. In case there is a rotation the return object is completely new aperture with the (one) new flash.

```java
void gridOutline ( Point refPoint,
                 Point offset,
                 int repeatX,
                 int repeatY
)
```

PCB images in a flat data need to be outlined. We can manually construct outline contour in this (usually the layer in plane 1 and outline extra layer) layer according to a PCB image in reference layer. We mark reference point in PCB image and give an offset of the same reference data in direction X and Y. The repeat parameter defines a number of outlines in each direction.

Parameters:

- `refPoint` A point where the PCB data are taken as an reference (for alignment)
- `offset` of the outline grid in X and Y
- `repeatX` a number of the outlines in X direction
- `repeatY` a number of the outlines in Y direction

Returns:

Uapeobj can be `null` in case the new outline couldn't be created. The return aperture can be the same in case the target is without rotation. Only the object(flash) is the new. In case there is a rotation the return object is completely new aperture with the (one) new flash.

```java
void gridStep ( double dStepX,
               double dStepY
)
```

Sets the X and Y distances between grid crosses or lines

Parameters:

- `dStepX` the X distance between grid crosses or lines
- `dStepY` the Y distance between grid crosses or lines

```java
Point gridStep (  )
```

Returns the `Point` with coordinates presenting the X and Y distance between grid crosses or lines

Returns:
the Point with coordinates presenting the X and Y distance between grid crosses or lines

```java
double gridStepX ()

Returns the X distance between grid crosses or lines

Returns:
the X distance between grid crosses or lines
```

```java
double gridStepY ()

Returns the Y distance between grid crosses or lines

Returns:
the Y distance between grid crosses or lines
```

```java
void gridVisible ( boolean bVisible )

Sets the grid visible or hidden

Parameters:
  bVisible true to make the grid visible, false to make it hidden
```

```java
boolean gridVisible ( )

returns true if the grid is currently visible

Returns:
true if the grid is currently visible
```

```java
void groupApeBy ( String spec )

Group apertures with common specs on all active layers

Parameters:
  spec Spec: "number", "definition" or "plane"
```

```java
void groupApertureDefinitions ( )

Aperture Manager: Group Apertures by Definition in active layer in plane 1
```

```java
void groupApertureNumbers ( )

Aperture Manager: Group Apertures by Numbers in active layer in plane 1
```
`void groupAperturesByPolarity()`

Aperture Manager: Group Apertures by Polarity in active layer in plane 1

`double groupUFD (double dDistance)`

Group faults in a fault list

Parameters:
- `dDistance` - neighborhood

Returns:
- true value of grouping distance

`void groupUFD ()`

Group faults in a fault list

`void helpOnContext ()`

Get help on context.

`void hideAll ()`

Hide all layers

`void hideBlockStructure ()`

hide Block Structure Information dialog

`void HitachiSpotDiameterCompensation (double dOffset, double dArcExpandMarginOverrideMicrons, int iMode, int iFastMode, boolean bAmSkipFlag, boolean bChangePolarity)`

Performs Hitachi SPP

Parameters:
- `dOffset` compensation value in microns (positive = normal (thin); negative = reverse (thicken))
- `dArcExpandMarginOverrideMicrons` if >= 0, override ucam.db arc expand margin (in micron)
void HitachiSpotDiameterCompensation (double dOffset,
 double dArcExpandMarginOverrideMicrons,
 int iMode,
 boolean bFastMode,
 boolean bAmSkipFlag,
 boolean bChangePolarity)

Performs Hitachi SPP

Parameters:

- **dOffset**: compensation value in microns (positive = normal (thin); negative = reverse (thicken))
- **dArcExpandMarginOverrideMicrons**: if >= 0, override ucam.db arc expand margin (in microns)
- **iMode**: SPP mode (can be 1 or 2)
- **bFastMode**: SPP fast mode flag
- **bAmSkipFlag**: whether or not to skip processing of Aperture Macros (ignored)
- **bChangePolarity**: nonzero indicates that the layer will be reversed by the DE system; therefore, the sign of the offset should swapped when working in Mode 2

String i8Jobarticleid ()

Returns the current job articleid.

Returns:

- current job articleid or null if there is no current job

String i8JobBoardid ()

Returns the current job boardid.

Returns:

- current job boardid or null if there is no current job

String i8JobCustomer ()

Returns the current job customer.

Returns:

- current job customer or null if there is no current job
boolean i8JobDelete()

Deletes the current job.

Returns:
true if the job was successfully deleted, false otherwise

int i8JobDuration()

Returns the current job duration.

Returns:
current job duration or -1 if there is no current job

Date i8JobFinishtime()

Returns the current job finishtime.

Returns:
current job finishtime or null if there is no current job

int i8JobFullDuration()

Returns the current job fullduration.

Returns:
current job fullduration or -1 if there is no current job

int i8JobId()

Returns the current job id.

Returns:
current job id or -1 if there is no current job

String i8JobLocation()

Returns the current job location.

Returns:
current job location or null if there is no current job

int i8JobPriority()

Returns the current job priority.

Returns:
current job priority or -1 if there is no current job

String i8JobProgress ()
Returns the current job progress.

Returns:
current job progress or null if there is no current job

int i8JobQueueposition ()
Returns the current job queueposition.

Returns:
current job queueposition or -1 if there is no current job

Date i8JobStarttime ()
Returns the current job starttime.

Returns:
current job starttime or null if there is no current job

Date i8JobSubmittime ()
Returns the current job submittime.

Returns:
current job submittime or null if there is no current job

void importEpc (String sPath)
import Epc CAR job

Parameters:
sPath - full path to 'job'.car file inside EPC files directory

int importExternal (String sExtName,
String sWheName,
String sLanguage,
boolean bKeepExtension,
String sLayClass,
String sLayAtt,
String sStatus,
String sWheLang,
boolean bAnalyzed,
import External file

Parameters:

- `sExtName`: external file full path
- `sWheName`: wheel file full path
- `sLanguage`: language
- `bKeepExtension`: keep extension
- `sLayClass`: layer class
- `sLayAtt`: layer attributes
- `sStatus`: status
- `sWheLang`: wheel language
- `bAnalyzed`: analyzed flag
- `sWheFile`: wheel file needed info ("---" or "...")
- `iLocale`: file location 1=local 0=remote

Returns:

status

```java
int importExternal ( String sExtName,
                    String sWheName,
                    String sLanguage,
                    boolean bKeepExtension )
```

import External file

Parameters:

- `sExtName`: external file full path
- `sWheName`: wheel file full path
- `sLanguage`: language
- `bKeepExtension`: keep extension

Returns:

status

```java
int importExternal ( String sExtName )
```

import External file, it will call format analyzer

Parameters:

- `sExtName`: external file full path

Returns:

status

```java
void importFile ( String sScriptPath )
```

Import script from file.
Parameters:
 `sScriptPath` - full path to the script file

```java
void importGwk ( String sPath )
import GWK file

Parameters:
  `sPath` - full path to GWK file
```

```java
String importHeptaCSV ( String sCSVFile,
                        String sDXFFile,
                        String sOptions )
import Hepta CSV file

Parameters:
  `sCSVFile` - csv file
  `sDXFFile` - dxf file
  `sOptions` - options for hepta csv

Returns:
  `null` if OK otherwise return an error message as a string
```

```java
void importHouei ( String sPath )
import Houei job

Parameters:
  `sPath` - full path to Houei kend_xxx.par file inside Houei job directory
```

```java
void importIpc ( String sPath,
                 String sVersion )
import MET and IPC356 and IPC356b file

Parameters:
  `sPath` - full path to MET or IPC file
  `sVersion` - version of IPC format (correct values are "ipc356" or "ipc356b" or "met")
```

```java
void importIPC2581 ( String sPath,
                     String sStep,
                     String sLayer )
import IPC2581
```
Parameters:
- `sPath` path to IPC2581 file
- `sStep` step name
- `sLayer` layer name

```java
void importODBxx ( String sPath,
                   String sStep,
                   String sLayer,
                   ObjectList oReplaceCodeMap
                 )
```

import ODBxx

Parameters:
- `sPath` path to ODB job
- `sStep` step name
- `sLayer` layer name
- `oReplaceCodeMap` the replace code map ObjectList

Example: `[[{"$$CODE","Result text1"}],{"$$CODE1","Result text2"}]]`

```java
void importODBxx ( String sPath,
                   String sStep
                 )
```

import ODBxx

Parameters:
- `sPath` path to ODB job
- `sStep` ODB step
- `oReplaceCodeMap` the replace code map ObjectList

Example: `[[{"$$CODE","Result text1"}],{"$$CODE1","Result text2"}]]`
import ODBxx

Parameters:

- `sPath` path to ODB job
- `sStep` ODB step

```java
void importPolarBuildup ( String sPolarFilePath )
```

Imports the buildup information from a stkx file generated by the Polar application.

Parameters:

- `sPolarFilePath` The file path specification for the Polar stkx file.

```java
void importScript ( String sScript )
```

Import given script

Parameters:

- `sScript` - the script text

```java
void importWf ( String sPath )
```

import WF file

Parameters:

- `sPath` - full path to WF file

```java
void innerCopperCount ( boolean bUseMask, boolean bConfirmMaskUsage )
```

Calculates the copper surface in active inner layers.

Parameters:

- `bUseMask` When true, active mask layers are taken into account: The "free of mask" area's are then calculated. The mask with attachment top is used for the top outer layer. The mask with attachment bottom is used for the bottom outer layer. The mask with attachment none is used for inner layers.
- `bConfirmMaskUsage` When true and active mask layers exist, then asks for confirmation if active mask layers should be used, or not.

```java
void innerCopperCount ( )
```

Calculates the copper surface in active inner layers.
void insertAperture (boolean bBefore,
 String sSrcLayer,
 ObjectList srcApeIndex)

Aperture Manager: Insert aperture(s) of (other) layer near current aperture

Parameters:
- `bBefore`: true: insert before apeIndex; false: insert after apeIndex
- `sSrcLayer`: Name of the layer to take apertures from
- `srcApeIndex`: Array of indexes of the apertures on the source layer

int insertArc (double arc_fx,
 double arc fy,
 double arc tx,
 double arc ty,
 double arc cx,
 double arc cy,
 String arc_sense,
 int iNet,
 String sSelection)

Insert arc using current aperture

Parameters:
- `arc_fx`: (from X coordinate) The arc
- `arc fy`: (from Y coordinate) The arc
- `arc tx`: (to X coordinate) The arc
- `arc ty`: (to Y coordinate) The arc
- `arc cx`: (to X coordinate) The arc
- `arc cy`: (to Y coordinate) The arc
- `arc_sense`: (arc sense) The arc
- `iNet`: The net number of the object.
- `sSelection`: The selection option. Either "all" or "sel". If "sel" is specified, the object is marked as selected.

Returns:
- Error status. (0 on success, non-zero on failure.)

int insertArc (Arc arc,
 int iNet,
 String sSelection)

Insert arc using current aperture

Parameters:
- `arc`: The arc
- `iNet`: The net number of the object.
- `sSelection`: The selection option. Either "all" or "sel". If "sel" is specified, the object is marked as
Returns:
Error status. (0 on success, non-zero on failure.)

```c
void insertArc3Point ( double pnt1_x,
                double pnt1_y,
                double pnt2_x,
                double pnt2_y,
                double pnt3_x,
                double pnt3_y )
```

Insert arc using current aperture. Count arc from 3 outline points.

Parameters:
- `pnt1_x` (X coordinate) outline point (from point)
- `pnt1_y` (Y coordinate) outline point (from point)
- `pnt2_x` (X coordinate) outline point
- `pnt2_y` (Y coordinate) outline point
- `pnt3_x` (X coordinate) outline point (to point)
- `pnt3_y` (Y coordinate) outline point (to point)

```c
void insertArc3Point ( Point pnt1,
                Point pnt2,
                Point pnt3 )
```

Insert arc using current aperture. Count arc from 3 outline points.

Parameters:
- `pnt1` outline point (from point)
- `pnt2` outline point
- `pnt3` outline point (to point)

```c
void insertArc3Point ( double pnt1_x,
                double pnt1_y,
                double pnt2_x,
                double pnt2_y,
                double pnt3_x,
                double pnt3_y,
                int iNet,
                String sSelection )
```

Insert arc using current aperture. Count arc from 3 outline points.

Parameters:
- `pnt1_x` (X coordinate) outline point (from point)
void insertArc3Point (Point pnt1,
 Point pnt2,
 Point pnt3,
 int iNet,
 String sSelection)

Insert arc using current aperture. Count arc from 3 outline points.

Parameters:
- pnt1: outline point (from point)
- pnt2: outline point
- pnt3: outline point (to point)
- iNet: The net number of the object.
- sSelection: The selection option. If "sel" is specified, the object is marked as selected.

void insertArcCenterStart (double pntCenter_x,
 double pntCenter_y,
 double pntFrom_x,
 double pntFrom_y,
 double pntTo_x,
 double pntTo_y,
 String sDirection)

Insert arc using current aperture. Count arc from 2 outline points and center point.

Parameters:
- pntCenter_x: (X coordinate) center point
- pntCenter_y: (Y coordinate) center point
- pntFrom_x: (X coordinate) outline point
- pntFrom_y: (Y coordinate) outline point
- pntTo_x: (X coordinate) outline point
- pntTo_y: (Y coordinate) outline point
- sDirection: direction of arc

void insertArcCenterStart (Point pntCenter,
 Point pntFrom,
 Point pntTo,
 String sDirection)
Insert arc using current aperture. Count arc from 2 outline points and center point.

Parameters:

- `pntCenter` center point
- `pntFrom` outline point
- `pntTo` outline point
- `sDirection` direction of arc

```java
void insertArcCenterStart ( double pntCenter_x,
                            double pntCenter_y,
                            double pntFrom_x,
                            double pntFrom_y,
                            double pntTo_x,
                            double pntTo_y,
                            String sDirection,
                            int iNet,
                            String sSelection
)
```

Insert arc using current aperture. Count arc from 2 outline points and center point.

Parameters:

- `pntCenter_x` (X coordinate) center point
- `pntCenter_y` (Y coordinate) center point
- `pntFrom_x` (X coordinate) outline point
- `pntFrom_y` (Y coordinate) outline point
- `pntTo_x` (X coordinate) outline point
- `pntTo_y` (Y coordinate) outline point
- `sDirection` direction of arc
- `iNet` The net number of the object.
- `sSelection` The selection option. If "sel" is specified, the object is marked as selected.

```java
void insertArcCenterStart ( Point pntCenter,
                            Point pntFrom,
                            Point pntTo,
                            String sDirection,
                            int iNet,
                            String sSelection
)
```

Insert arc using current aperture. Count arc from 2 outline points and center point.

Parameters:

- `pntCenter` center point
- `pntFrom` outline point
- `pntTo` outline point
- `sDirection` direction of arc
- `iNet` The net number of the object.
- `sSelection` The selection option. If "sel" is specified, the object is marked as selected.
boolean insertArcConcentric (boolean bSelection,
 ObjectList oArcs)

Insert concentric arcs using current aperture

Parameters:
 bSelection The selection. If "true" is specified, the objects are marked as selected.
 oArcs The array of arcs

Returns:
 Error status. (true, something was added)

void insertBreak (Point line_fp,
 Point line_tp)

Add break to arcs and draws on the line.

Parameters:
 line_fp (from point) The break will be on the line
 line_tp (to point) The break will be on the line

void insertBreak (double line_fx,
 double line_fy,
 double line_tx,
 double line_ty)

Add break to arcs and draws on the line.

Parameters:
 line_fx (from X coordinate) The break will be on the line
 line_fy (from Y coordinate) The break will be on the line
 line_tx (to X coordinate) The break will be on the line
 line_ty (to Y coordinate) The break will be on the line

void insertBreak (Line line)

Add break to arcs and draws on the line.

Parameters:
 line The break will be on the line

void insertContourText (double rect_xmin,
 double rect_ymin,
 double rect_zmin,
 double rect_zmax)

Add contour text to the image.
Creates and add to the layer a contour aperture containing the specified text.

Parameters:

- **rect_xmin** (left boundary of rectangle) The enclosing rectangle for the text.
- **rect_ymin** (bottom boundary of rectangle) The enclosing rectangle for the text.
- **rect_xmax** (right boundary of rectangle) The enclosing rectangle for the text.
- **rect_ymax** (top boundary of rectangle) The enclosing rectangle for the text.
- **sText** The text to be imaged.
- **sFontName** font name, see java.awt.Font constructor
- **iFontStyle** font style, see java.awt.Font constructor
- **sMirror** The mirror setting, either "", "X", "Y" or "XY".
- **bReverse** Indication whether the contour aperture needs to be reversed or not.
- **bAllowDistortion** Allowed distortion if set to true
- **sSelection** if set to "sel", the contour text will be selected

void insertContourText (Rectangle rect,

- **String sText,**
- **String sFontName,**
- **int iFontStyle,**
- **String sMirror,**
- **boolean bReverse,**
- **boolean bAllowDistortion,**
- **String sSelection**

Creates and add to the layer a contour aperture containing the specified text.

Parameters:

- **rect** The enclosing rectangle for the text.
- **sText** The text to be imaged.
- **sFontName** font name, see java.awt.Font constructor
- **iFontStyle** font style, see java.awt.Font constructor
- **sMirror** The mirror setting, either "", "X", "Y" or "XY".
- **bReverse** Indication whether the contour aperture needs to be reversed or not.
- **bAllowDistortion** Allowed distortion if set to true
- **sSelection** if set to "sel", the contour text will be selected

void insertCopper (int number,

- **String attach,**

VHS API Specification
March 2018
Page 191 of 393
String material, double thickness, String reference, double tolerance, String supplier)

Inserts copper with a given material specification to the specified Layer.

Parameters:
- number: Signal Layer index
- attach: attach "top" or "bottom"
- material: Material name
- thickness: Material thickness
- reference: Material reference
- tolerance: Material tolerance
- supplier: Material supplier

void insertCore (int layNum, boolean matTop, boolean matBot, String material, String topMaterial, String botMaterial, double thickness, double topThickness, double botThickness, String reference, double tolerance, double erConstant, String supplier, ObjectList attrNames, Object[] attrValues, boolean revInsert)

Inserts core with a given material specification between the specified Layers.

Parameters:
- layNum: int Top layer index
- matTop: boolean true if the core is attached to the top layer
- matBot: boolean true if the core is attached to the bottom layer
- material: String Material name
- topMaterial: String material on the top of the core
- botMaterial: String material on the bot of the core
- thickness: double Material thickness
- topThickness: double thickness of the top material
- botThickness: double thickness of the bot material
- reference: String Material reference
- tolerance: double Material tolerance
- erConstant: double Material ER constant
- supplier: String Material supplier
void insertCore (int layNum,
 boolean matTop,
 boolean matBot,
 String material,
 String topMaterial,
 String botMaterial,
 double thickness,
 double topThickness,
 double botThickness,
 String reference,
 double tolerance,
 double erConstant,
 String supplier,
 ObjectList attrNames,
 Object[] attrValues)

Inserts core with a given material specification between the specified Layers.

Parameters:

- **layNum**: int Top layer index
- **matTop**: boolean true if the core is attached to the top layer
- **matBot**: boolean true if the core is attached to the bottom layer
- **material**: String Material name
- **topMaterial**: String material on the top of the core
- **botMaterial**: String material on the bot of the core
- **thickness**: double Material thickness
- **topThickness**: double thickness of the top material
- **botThickness**: double thickness of the bot material
- **reference**: String Material reference
- **tolerance**: double Material tolerance
- **erConstant**: double Material ER constant
- **supplier**: String Material supplier
- **attrNames**: String list of the Material attribute names
- **attrValues**: String the same sized list of the Material attribute values. If the Material attribute has no value put the empty string "", no null value!

void insertCore (int layTop,
 int layBot,
 boolean matTop,
 boolean matBot,
 String material,
 String topMaterial,
 String botMaterial,
double thickness,
double topThickness,
double botThickness,
String reference,
double tolerance,
double erConstant,
String supplier,
ObjectList attrNames,
Object[] attrValues,
boolean revInsert)

Inserts core with a given material specification between the specified Layers.

Parameters:
layTop int Top layer index
layBot int Bottom layer index
matTop boolean true if the core is attached to the top layer
matBot boolean true if the core is attached to the bottom layer
material String Material name
topMaterial String material on the top of the core
botMaterial String material on the bot of the core
thickness double Material thickness
topThickness double thickness of the top material
botThickness double thickness of the bot material
reference String Material reference
tolerance double Material tolerance
erConstant double Material ER constant
supplier String Material supplier
attrNames String list of the Material attribute names
attrValues String the same sized list of the Material attribute values. If the Material attribute has no value put the empty string "", no null value!
revInsert boolean toggles top and bottom material.

void insertCore (int layTop,
int layBot,
boolean matTop,
boolean matBot,
String material,
String topMaterial,
String botMaterial,
double thickness,
double topThickness,
double botThickness,
String reference,
double tolerance,
double erConstant,
String supplier,
ObjectList attrNames,
Object[] attrValues)
Inserts core with a given material specification between the specified Layers.

Parameters:

- `layTop` int Top layer index
- `layBot` int Bottom layer index
- `matTop` boolean true if the core is attached to the top layer
- `matBot` boolean true if the core is attached to the bottom layer
- `material` String Material name
- `topMaterial` String Material name
- `botMaterial` String Material name
- `thickness` double Material thickness
- `topThickness` double Material thickness
- `botThickness` double Material thickness
- `reference` String Material reference
- `tolerance` double Material tolerance
- `erConstant` double Material ER constant
- `supplier` String Material supplier
- `attrNames` String list of the Material attribute names
- `attrValues` String the same sized list of the Material attribute values. If the Material attribute has no value put the empty string "", no null value!

```java
int insertDraw ( double line_fx,
                double line_fy,
                double line_tx,
                double line_ty,
                int iNet,
                String sSelection
)
```

Insert draw using current aperture

Parameters:

- `line.fx` (from X coordinate) The line
- `line fy` (from Y coordinate) The line
- `line tx` (to X coordinate) The line
- `line ty` (to Y coordinate) The line
- `iNet` The net number of the object.
- `sSelection` The selection option. Either "all" or "sel". If "sel" is specified, the object is marked as selected.

Returns:

Error status. (0 on success, non-zero on failure.)

```java
int insertDraw ( Line line,
                int iNet,
                String sSelection
)
```

Insert draw using current aperture

Parameters:

- `line` The line
iNet The net number of the object.

sSelection The selection option. Either "all" or "sel". If "sel" is specified, the object is marked as selected.

Returns:
- Error status. (0 on success, non-zero on failure.)

```c
int insertDraw ( double line_fx,
                 double line_fy,
                 double line_tx,
                 double line_ty
               )
```

Insert draw using current aperture

Parameters:
- `line_fx` (from X coordinate) The line
- `line_fy` (from Y coordinate) The line
- `line_tx` (to X coordinate) The line
- `line_ty` (to Y coordinate) The line

Returns:
- Error status. (0 on success, non-zero on failure.)

```c
int insertDraw ( Line line )
```

Insert draw using current aperture

Parameters:
- `line` The line

Returns:
- Error status. (0 on success, non-zero on failure.)

```c
int insertFlash ( double pt_x,
                 double pt_y,
                 int iNet,
                 String sSelection
               )
```

Insert Flash using current aperture, set net number and selection

Parameters:
- `pt_x` (X coordinate) The flash point
- `pt_y` (Y coordinate) The flash point
- `iNet` The net number of the object.
- `sSelection` The selection option. Either "all" or "sel". If "sel" is specified, the object is marked as selected.

Returns:
- Error status. (0 on success, non-zero on failure.)
int insertFlash (Point pt,
 int iNet,
 String sSelection)

Insert Flash using current aperture, set net number and selection

Parameters:
 pt The flash point
 iNet The net number of the object.
 sSelection The selection option. Either "all" or "sel". If "sel" is specified, the object is marked as selected.

Returns:
 Error status. (0 on success, non-zero on failure.)

int insertFlash (double pt_x,
 double pt_y)

Insert Flash using current aperture

Parameters:
 pt_x (X coordinate) The flash point
 pt_y (Y coordinate) The flash point

Returns:
 Error status. (0 on success, non-zero on failure.)

int insertFlash (Point pt)

Insert Flash using current aperture

Parameters:
 pt The flash point

Returns:
 Error status. (0 on success, non-zero on failure.)

void insertFlashRepeat (double pt_x,
 double pt_y,
 int iNx,
 double dXstep,
 int iNy,
 double dYstep,
 String sSelection)

Generates a step and repeat of flashes
Parameters:

- pt_x (X coordinate) The offset (start) point.
- pt_y (Y coordinate) The offset (start) point.
- iNx The number of repetitions in x direction.
- $dXstep$ The step in x direction.
- iNy The number of repetitions in y direction.
- $dYstep$ The step in y direction.
- $sSelection$ The selection option. Either "all" or "sel". If "sel" is specified, the flashes are marked as selected.

```java
void insertFlashRepeat ( Point pt,
                        int iNx,
                        double dXstep,
                        int iNy,
                        double dYstep,
                        String sSelection )
```

Generates a step and repeat of flashes

Parameters:

- pt The offset (start) point.
- iNx The number of repetitions in x direction.
- $dXstep$ The step in x direction.
- iNy The number of repetitions in y direction.
- $dYstep$ The step in y direction.
- $sSelection$ The selection option. Either "all" or "sel". If "sel" is specified, the flashes are marked as selected.

```java
void insertFlashRepeat ( double pt_x,
                        double pt_y,
                        int iNx,
                        double dXstep,
                        int iNy,
                        double dYstep )
```

Generates a step and repeat of flashes

Parameters:

- pt_x (X coordinate) The offset (start) point.
- pt_y (Y coordinate) The offset (start) point.
- iNx The number of repetitions in x direction.
- $dXstep$ The step in x direction.
- iNy The number of repetitions in y direction.
- $dYstep$ The step in y direction.
double dXstep,
int iNy,
double dYstep
)

Generates a step and repeat of flashes

Parameters:
- pt: The offset (start) point.
- iNx: The number of repetitions in x direction.
- dXstep: The step in x direction.
- iNy: The number of repetitions in y direction.
- dYstep: The step in y direction.

```
void insertFullArc3Point ( double pnt1_x,
double pnt1_y,
double pnt2_x,
double pnt2_y,
double pnt3_x,
double pnt3_y
)
```

Insert full arc using current aperture. Count arc from 3 outline points.

Parameters:
- pnt1_x: (X coordinate) outline point
- pnt1_y: (Y coordinate) outline point
- pnt2_x: (X coordinate) outline point
- pnt2_y: (Y coordinate) outline point
- pnt3_x: (X coordinate) outline point
- pnt3_y: (Y coordinate) outline point

```
void insertFullArc3Point ( Point pnt1,
Point pnt2,
Point pnt3
)
```

Insert full arc using current aperture. Count arc from 3 outline points.

Parameters:
- pnt1: outline point
- pnt2: outline point
- pnt3: outline point
void insertFullArc3Point (Point pnt1, Point pnt2, Point pnt3, int iNet, String sSelection)

Insert full arc using current aperture. Count arc from 3 outline points.

Parameters:
- pnt1: (X coordinate) outline point
- pnt2: (X coordinate) outline point
- pnt3: (X coordinate) outline point
- iNet: The net number of the object.
- sSelection: The selection option. Either "all" or "sel". If "sel" is specified, the object is marked as selected.

void insertFullArcCenterRadius (double pntCenter_x, double pntCenter_y, double dRadius, String sDirection)

Insert full arc using current aperture. Count arc from radius and center point.

Parameters:
- pntCenter_x: (X coordinate) center point
- pntCenter_y: (Y coordinate) center point
- dRadius: radius of arc
- sDirection: direction of arc
double dRadius,
String sDirection
)

Insert full arc using current aperture. Count arc from radius and center point.

Parameters:

- `pntCenter` center point
- `dRadius` radius of arc
- `sDirection` direction of arc

```java
void insertFullArcCenterRadius ( double pntCenter_x,
                                double pntCenter_y,
                                double dRadius,
                                String sDirection,
                                int iNet,
                                String sSelection
)
```

Insert full arc using current aperture. Count arc from radius and center point.

Parameters:

- `pntCenter_x` (X coordinate) center point
- `pntCenter_y` (Y coordinate) center point
- `dRadius` radius of arc
- `sDirection` direction of arc
- `iNet` The net number of the object.
- `sSelection` The selection option. Either "all" or "sel". If "sel" is specified, the object is marked as selected.

```java
void insertFullArcCenterRadius ( Point pntCenter,
                                double dRadius,
                                String sDirection,
                                int iNet,
                                String sSelection
)
```

Insert full arc using current aperture. Count arc from radius and center point.

Parameters:

- `pntCenter` center point
- `dRadius` radius of arc
- `sDirection` direction of arc
- `iNet` The net number of the object.
- `sSelection` The selection option. Either "all" or "sel". If "sel" is specified, the object is marked as selected.

```java
boolean insertParallel ( boolean bSelection,
                        ObjectList oLines
)
```
Insert parallel draws using current aperture

Parameters:

- $bSelection$ The selection. If "true" is specified, the objects are marked as selected.

- $oLines$ The array of draws

Returns:

Error status. (true, something was added)

```java
void insertPolydrawRect ( double rect_xmin,
                          double rect_ymin,
                          double rect_xmax,
                          double rect_ymax,
                          boolean bSel )
```

Insert polydraw rectangle using current aperture

Parameters:

- $rect_xmin$ (left boundary of rectangle) rectangle to draw
- $rect_ymin$ (bottom boundary of rectangle) rectangle to draw
- $rect_xmax$ (right boundary of rectangle) rectangle to draw
- $rect_ymax$ (top boundary of rectangle) rectangle to draw
- $bSel$ if true selects the new created objects

```java
void insertPolydrawRect ( Rectangle rect,
                          boolean bSel )
```

Insert polydraw rectangle using current aperture

Parameters:

- $rect$ rectangle to draw
- $bSel$ if true selects the new created objects

```java
void insertPolydrawRect ( double rect_xmin,
                          double rect_ymin,
                          double rect_xmax,
                          double rect_ymax )
```
void insertPolydrawRect (Rectangle rect)

Insert polydraw rectangle using current aperture

Parameters:
 rect rectangle to draw

void insertPolydrawRect (double drawRectangle_xmin,
 double drawRectangle_ymin,
 double drawRectangle_xmax,
 double drawRectangle_ymax,
 boolean bRectCW,
 boolean bSel)

Insert polydraw rectangle using current aperture

Parameters:
 drawRectangle_xmin (left boundary of rectangle) rectangle to draw
 drawRectangle_ymin (bottom boundary of rectangle) rectangle to draw
 drawRectangle_xmax (right boundary of rectangle) rectangle to draw
 drawRectangle_ymax (top boundary of rectangle) rectangle to draw
 bRectCW set true if the rectangle should be CW
 bSel set true if the rectangle should be selected

void insertPolydrawRect (Rectangle drawRectangle,
 boolean bRectCW,
 boolean bSel)

Insert polydraw rectangle using current aperture

Parameters:
 drawRectangle rectangle to draw
 bRectCW set true if the rectangle should be CW
 bSel set true if the rectangle should be selected

void insertPolydrawRect (Point p1,
 Point p2,
 boolean bRectCW,
 boolean bSel)

Deprecated:
 Insert polydraw rectangle using current aperture

Parameters:
 p1 bottom left point of the rectangle
void insertPolygon (boolean bSelection,
 ObjectList polygon)

Insert polygon using current aperture

Parameters:

bSelection The selection. If "true" is specified, the objects are marked as selected.
polygon polygon as array of lines

void insertPrePreg (int topLayer,
 int bottomLayer,
 String sPosition,
 String material,
 double thickness,
 String reference,
 double tolerance,
 double erConstant,
 String supplier,
 ObjectList attrNames,
 Object[] attrValues)

Inserts prepreg with a given specification between the specified Layers.

Parameters:

topLayer top Layer for prepreg
bottomLayer bottom Layer for prepreg
sPosition "Up" or "Down" value
material String Material name
thickness double Material thickness
reference String Material reference
tolerance double Material tolerance
erConstant double Material ER constant
supplier String Material supplier
attrNames String list of the Material attribute names
attrValues String the same sized list of the Material attribute values. If the Material attribute has no value put the empty string "", no null value!

void insertTab (double p_x,
 double p_y,
 double dis,
 String pat)
Replaces a part of a track or a part of a corner formed by two tracks by a predefined pattern. This pattern is actually a predefined DPF-job. You must position the pattern in the required position using the Numbers dialog box or by inserting it as a flash. The use on corners is limited to corners of 90 degrees, formed by a horizontal and a vertical tracks. The patterns are flashed on the corner point (for corners) or on the click point for single tracks.

Parameters:

- \(p_x \) (X coordinate) tab location
- \(p_y \) (Y coordinate) tab location
- \(dis \) the distance of the opening in the rout where the tab will be placed
- \(pat \) the current pattern

```java
void insertTab ( Point p,
                       double dis,
                       String pat )
```

Insert Vector Text using current aperture

Parameters:

- \(pt_x \) (X coordinate) flash point
- \(pt_y \) (Y coordinate) flash point
- \(sText \) Text string
- \(sFont \) Vector Text font
- \(dWidth \) Character width (for fixed width fonts like "ODBstandard")
- \(dSpacing \) Character spacing (for variable width fonts like "vtx")
- \(sMirror \) Mirror (none, X, Y or XY)
- \(dRotation \) Rotation
- \(dScale \) Scale in both directions

```java
void insertVectorText ( double pt_x,
                                      double pt_y,
                                      String sText,
                                      String sFont,
                                      double dWidth,
                                      double dSpacing,
                                      String sMirror,
                                      double dRotation,
                                      double dScale )
```
void insertVectorText (Point pt,
 String sText,
 String sFont,
 double dWidth,
 double dSpacing,
 String sMirror,
 double dRotation,
 double dScale)

Insert Vector Text using current aperture

Parameters:
 pt flash point
 sText Text string
 sFont Vector Text font
 dWidth Character width (for fixed width fonts like "ODBstandard")
 dSpacing Character spacing (for variable width fonts like "vtx")
 sMirror Mirror (none, X, Y or XY)
 dRotation Rotation
 dScale Scale in both directions

void insertVectorText (double pt_x,
 double pt_y,
 String sText,
 String sFont,
 double dWidth,
 double dSpacing,
 String sMirror,
 double dRotation,
 double dScaleX,
 double dScaleY)

Insert Vector Text using current aperture

Parameters:
 pt_x (X coordinate) flash point
 pt_y (Y coordinate) flash point
 sText Text string
 sFont Vector Text font
 dWidth Character width (for fixed width fonts like "ODBstandard")
 dSpacing Character spacing (for variable width fonts like "vtx")
 sMirror Mirror (none, X, Y or XY)
 dRotation Rotation
 dScaleX Scale in X direction
 dScaleY Scale in Y direction
Insert Vector Text using current aperture

Parameters:

- `pt` (flash point) Text string
- `sText` Text string
- `sFont` Vector Text font
- `dWidth` Character width (for fixed width fonts like "ODBstandard")
- `dSpacing` Character spacing (for variable width fonts like "vtx")
- `sMirror` Mirror (none, X, Y or XY)
- `dRotation` Rotation
- `dScaleX` Scale in X direction
- `dScaleY` Scale in Y direction

void intersectDraws (double pt_x, double pt_y)

Add intersection point on 2 intersecting draws

Parameters:

- `pt_x` (X coordinate) Intersection location
- `pt_y` (Y coordinate) Intersection location

void intersectDraws (Point pt)

Add intersection point on 2 intersecting draws

Parameters:

- `pt` Intersection location

boolean isDirectory (ObjectList fileInfo)

Tests whether the file denoted by this fileInfo is a directory.

Parameters:

- `fileInfo` objectlist with the file information

Returns:

true if and only if the file denoted by this fileInfo is a directory; false otherwise

See also:
boolean isEqual (Object oParam1, Object oParam2)

Compare 2 given objects

Parameters:
- `oParam1` it can be any of supported object
- `oParam2` it can be any of supported object

Returns:
- `true` if both are the same

boolean isFile (ObjectList fileInfo)

Tests whether the file denoted by this abstract is a normal file. A file is normal if it is not a directory and, in addition, satisfies other system-dependent criteria.

Parameters:
- `fileInfo` objectlist with the file information

Returns:
- `true` if the file is normal file; `false` otherwise

See also:
- `HSH_base::osFileInfo(String)`

boolean isHidden (ObjectList fileInfo)

Tests whether the file denoted by this fileInfo is a hidden file. The exact definition of hidden is system-dependent. On UNIX systems, a file is considered to be hidden if its name begins with a period character (`.`). On Microsoft Windows systems, a file is considered to be hidden if it has been marked as such in the filesystem.

Parameters:
- `fileInfo` objectlist with the file information

Returns:
- `true` if and only if the file denoted by this fileInfo is hidden according to the conventions of the underlying platform

See also:
- `HSH_base::osFileInfo(String)`

boolean isLayerInPlane (int iPlaneNumber)

Returns `true` when the layer in given plane exists, otherwise returns `false`

Parameters:
- `iPlaneNumber` plane number
Returns:
true when the layer in given plane exists, otherwise returns false

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>void job_save_shm_and_release (String sShmName)</td>
<td>save current job to shared memory</td>
</tr>
<tr>
<td>Parameters:</td>
<td>sShmName</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int jobApeMaxNumber ()</td>
<td>Gets the highest aperture number.</td>
</tr>
<tr>
<td>Returns:</td>
<td>The highest aperture number used so far. If no aperture is found, -1 is returned.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>String jobATEMachine ()</td>
<td>Returns the file specification of the ATE tester file.</td>
</tr>
<tr>
<td>Returns:</td>
<td>the file specification of the ATE tester file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>void jobAttribute (String name, String value)</td>
<td>Sets the given value to the given job attribute. If the attribute exists, its value is changed to the new value. Otherwise the attribute is created. If the value is null the attribute with the given name is removed.</td>
</tr>
<tr>
<td>Parameters:</td>
<td>name the job attribute name, value the job attribute value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>String jobAttribute (String name)</td>
<td>Returns the value of the Job attribute with given name.</td>
</tr>
<tr>
<td>Parameters:</td>
<td>name the job attribute name</td>
</tr>
<tr>
<td>Returns:</td>
<td>the value of the Job attribute with given name or null if the attribute is not defined in the job.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>String jobAttribute ()</td>
<td></td>
</tr>
</tbody>
</table>
void jobCopperCount (boolean bUseMask,
 boolean bConfirmMaskUsage
)

Calculates the copper surface in job (all layers).

Parameters:

 bUseMask When true, active mask layers are taken into account: The "free of mask" area's are then calculated. The mask with attachment top is used for the top outer layer. The mask with attachment bottom is used for the bottom outer layer. The mask with attachment none is used for inner layers.

 bConfirmMaskUsage When true and active mask layers exist, then asks for confirmation if active mask layers should be used, or not.

void jobCopperCount ()

Calculates the copper surface in job (all layers).

void jobCustomer (String sCustomer)

Sets the customer this job belongs to.

Parameters:

 sCustomer the customer this job belongs to

String jobCustomer ()

Returns the customer this job belongs to.

Returns:

 the customer this job belongs to

void jobDRCParameters (String sDrc)

Sets the design rule check parameter in this job.

Parameters:

 sDrc the design rule check parameter file entry in this job.

String jobDRCParameters ()

Example:
"uJobSize=mil,5840,2048,adjacency.distance=0,adjacency.blindnetsubst=1,uSessionPaiFile=D:.pai "

Returns: comma separated list of the all Job attributes.

Returns: comma separated list of the all Job attributes.
Returns the design rule check parameter file entry in this job.

Returns:
the design rule check parameter file entry in this job.

Rectangle jobEnclosingBox ()

Gets the enclosing rectangle of the job.

Returns:
Job enclosing rectangle.

void jobExtension (String sExtension)

Sets the extension of the job.

Parameters:
sExtension

void jobFixture (String sFixture)

Sets the fixture type used in electrical testing functions.

Parameters:
sFixture the fixture type. Either "top", "bot", "ssa" or "dsa".

String jobFixture ()

Returns the fixture type used in the electrical test functions. Possible values are "top", "bot", "ssa" and "dsa".

Returns:
the fixture type used in the electrical test functions. Possible values are "top", "bot", "ssa" and "dsa".

boolean jobHasPattern (boolean bUsed)

Returns true if the job has an aperture with a pattern in active layers.

Parameters:
bUsed pattern is used when it affects the image.

Returns:
true if the job has an aperture with a pattern in active layers.

void jobInfo (String[] sInfo)

Sets the information associated with the job.

Parameters:
void jobInfo (String sInfo)

Sets the information associated with the job.

Parameters:

sInfo the new information associated with the job.

String jobInfo ()

Returns the information associated with this object.

Returns:

the information associated with this object.

void jobLayMask (String sLayMask)

Sets the layer mask parameter for the Job. If the layer mask is already set in the Job, the function takes all active layer having current layer mask and replaces the layer name with the new layer mask.

Example:

```java
String cadDir = "HOME:\Data\Cad";

openJob(cadDir + "\\cad.job");

String layMask = jobLayMask();
String layMask = jobLayMask();
activateAllLayers();
jobLayMask("cad_");
jobLayMask("cad-");
layMask = jobLayMask();
layMask = jobLayMask();

jobLayMask("Lepa_");
jobLayMask("Lepa-");
String trgDir = cadDir + "\\copy"
osMkDir(trgDir);
saveJobAs(trgDir + "\\lepa.job");
```

Parameters:

sLayMask the layer mask that will be set in the Job.

String jobLayMask ()

Gets the layer mask currently set in the Job parameters.
>Returns: the layer mask currently set in the Job parameters.

See also:
 jobLayMask(String)
 jobLayMask(String)

int jobMaxNetnumer()

Gets the maximum netnumber in the job.

Returns: the maximum netnumber in the job.

void jobName(String sName)

Sets the job name.

Parameters:
 sName new name.

String jobName()

Returns the job name.

Returns: the job name.

boolean jobNetlist()

Checks if all positive data has a netnumber. It skips the layers of class JL_EXTRA. It is not required to set the layer(s) active.

Returns: true if all positive data has a netnumber.

int jobNumApes()

Returns the number of the apertures in the job.

Returns: the number of the apertures in the job.

int jobNumBothExtras()

Returns the number of the extra layers in the job with the both attach.
Returns:
the number of the extra layers in the job with the both attach.

```java
int jobNumBothExtras ( String subClass )
```

Returns the number of the extra layers in the job with the both attach.

Parameters:

```
subClass
```
The subclass for the layers wanted. If not important specify ".". The default offered subclasses are "rout", "silk", "mask", "paste", "exclusion", "netref", "testpoints", "probe" and "guideplate".

Returns:
the number of the extra layers in the job with the both attach.

```java
int jobNumBottomExtras ( )
```

Returns the number of the extra layers in the job with the bottom attach.

Returns:
the number of the extra layers in the job with the bottom attach.

```java
int jobNumBottomExtras ( String subClass )
```

Returns the number of the extra layers in the job with the bottom attach.

Parameters:

```
subClass
```
The subclass for the layers wanted. If not important specify ".". The default offered subclasses are "rout", "silk", "mask", "paste", "exclusion", "netref", "testpoints", "probe" and "guideplate".

Returns:
the number of the extra layers in the job with the bottom attach.

```java
int jobNumCores ( )
```

Returns the number of the cores in the job.

Returns:
the number of the cores in the job.

```java
int jobNumDrills ( )
```

Returns the number of the drill layers in the job.

Returns:
the number of the drill layers in the job.
int jobNumDrills (String `subClass`)

Returns the number of the drill layers in the job.

Parameters:

- `subClass` The subclass for the layer wanted. If not important specify "". The default offered subclasses are "drill", "buried", "blind", "plated", "unplated" and "fixing".

Returns:

the number of the drill layers in the job.

int jobNumExtras ()

Returns the number of the extra layers in the job.

Returns:

the number of the extra layers in the job.

int jobNumExtras (String `subClass`)

Returns the number of the extra layers in the job.

Parameters:

- `subClass` The subclass for the layers wanted. If not important specify "". The default offered subclasses are "rout", "silk", "mask", "paste", "exclusion", "netref", "testpoints", "probe" and "guideplate".

Returns:

the number of the extra layers in the job.

int jobNumLayers ()

Returns the number of the all layers in the job.

Returns:

the number of the all layers in the job.

int jobNumNoneExtras ()

Returns the number of the extra layers in the job with the none attach.

Returns:

the number of the extra layers in the job with the none attach.

int jobNumNoneExtras (String `subClass`)

Returns the number of the extra layers in the job with the none attach.

Parameters:

- `subClass` The subclass for the layers wanted. If not important specify "". The default offered
subclasses are "rout", "silk", "mask", "paste", "exclusion", "netref", "testpoints", "probe" and "guideplate".

Returns:
the number of the extra layers in the job with the none attach.

```java
int jobNumPrepregs ( int start )
```

Returns the number of the prepregs in the job between given layer and the following layer.

Parameters:
- `start` the layer index where prepreg counting starts.

Returns:
the number of the prepregs in the job between given layer and the following layer.

```java
int jobNumPrepregs ( )
```

Returns the number of the prepregs in the job.

Returns:
the number of the prepregs in the job.

```java
int jobNumSignals ( )
```

Returns the number of the signal layers in the job.

Returns:
the number of the signal layers in the job.

```java
int jobNumSignals ( String subClass )
```

Returns the number of the signal layers in the job.

Parameters:
- `subClass` The subclass for the layer wanted. If not important specify "". The default offered subclasses are "outer", "inner" and "mixed".

Returns:
the number of the signal layers in the job.

```java
int jobNumTopExtras ( )
```

Returns the number of the extra layers in the job with the top attach.

Returns:
the number of the extra layers in the job with the top attach.
int jobNumTopExtras (String subClass)

Returns the number of the extra layers in the job with the top attach.

Parameters:
- `subClass` The subclass for the layers wanted. If not important specify "". The default offered subclasses are "rout", "silk", "mask", "paste", "exclusion", "netref", "testpoints", "probe" and "guideplate".

Returns:
- the number of the extra layers in the job with the top attach.

void jobPath (String sPath)

Sets the path of the job.

Parameters:
- `sPath` the path of the job

String jobPath()

Returns the path of the job.

Returns:
- Gets the path of the job.

void jobRevision (String sRevision)

Sets the job revision.

Parameters:
- `sRevision` the job revision

String jobRevision()

Returns the job revision.

Returns:
- Gets the job revision.

int jobSelectCount (String sOption)

Returns the number of selected objects in a job.

Parameters:
- `sOption` Specifies the type of the objects to count. "a" for arcs, "f" for flashes, "d" for draws, "r" for regions and "v" for vector text.

Returns:
- the number of selected objects.
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>int jobSelectCount ()</code></td>
<td>Returns the number of selected objects in a job.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Returns: the number of selected objects.</td>
<td></td>
</tr>
<tr>
<td><code>boolean jobSelection ()</code></td>
<td>Checks if this job contains selected items.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Returns: true if there are selections, false otherwise.</td>
<td></td>
</tr>
<tr>
<td><code>Rectangle jobSelectionEnclosingBox ()</code></td>
<td>Gets the enclosing rectangle of the job selection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Returns: Job selection enclosing rectangle.</td>
<td></td>
</tr>
<tr>
<td><code>void jobSize (double pntSize_x, double pntSize_y)</code></td>
<td>Sets job size.</td>
<td><code>pntSize_x</code> (X coordinate) new size of job, <code>pntSize_y</code> (Y coordinate) new size of job</td>
</tr>
<tr>
<td><code>void jobSize (Point pntSize)</code></td>
<td>Sets job size.</td>
<td><code>pntSize</code> new size of job</td>
</tr>
<tr>
<td><code>void jobSize (String sUnit, double pntSize_x, double pntSize_y)</code></td>
<td>Sets job size.</td>
<td><code>sUnit</code> new size of job</td>
</tr>
</tbody>
</table>
void jobSize (String \texttt{sUnit},
Point \texttt{pntSize})

Sets job size.

Parameters:
- \texttt{sUnit} unit of size
- \texttt{pntSize} new size of job

void jobSize (String \texttt{sSize})

Sets job size.

Parameters:
- \texttt{sSize} string like "mil,0,0", there are unit, x size and y size

Point jobSize ()

Returns job size using \texttt{uJobSize} attribute value.

Returns:
- \texttt{Point} representing job size, x and y size.

void jobSpec (String \texttt{sSpec})

Sets the full file specification of a job.

Parameters:
- \texttt{sSpec} the full file specification of a job.

String jobSpec ()

Returns the full file specification of a job.

Returns:
the full file specification of a job.

void jobUserData (String \texttt{sUserData})

Sets the user data of a job.

Parameters:
sUserData the user data of a job.

String jobUserData ()

Returns the user data of a job.

Returns:
the user data of a job.

void lajCleanLegendLayer (boolean DoMask,
double MaskClearance,
boolean DoCu,
double CuClearance,
boolean DoCuPads,
double CuPadClearance,
boolean bDoCuFOM,
double iCuFOMClearance,
boolean bDoCuPadsFOM,
double iCuPadsFOMClearance,
boolean doPlatedDrills,
double platedDrillClearance,
boolean doUnplatedDrills,
double UnplatedDrillClearance,
boolean DoSmallDraws,
double MinDrawSize)

Cleans all active silk layers against all active matching copper + drill + mask layers with the presented clearances

Parameters:

- **DoMask**: Clip around mask
- **MaskClearance**: Min. mask clearance
- **DoCu**: Clip around outer layer
- **CuClearance**: Min. outer clearance
- **DoCuPads**: Clip around copper pads
- **CuPadClearance**: Min. copper pad clearance
- **bDoCuFOM**: Clip around copper not covered by mask
- **iCuFOMClearance**: Min. unmasked copper clearance
- **bDoCuPadsFOM**: Clip around copper pads not covered by mask
- **iCuPadsFOMClearance**: Min. unmasked copper pad clearance
- **doPlatedDrills**: Clip around plated drills
- **platedDrillClearance**: Min. plated drill clearance
- **doUnplatedDrills**: Clip around unplated drills
- **UnplatedDrillClearance**: Min. unplated drill clearance
- **DoSmallDraws**: Remove small objects
- **MinDrawSize**: Min. object size
Turns selected objects on all active layers into a word

```java
void lajDeselectAllWords ()
```

Deselect all textboxes on all active layers

```java
void lajDragWord ( double pt_x,
    double pt_y,
    double radius,
    double offset_x,
    double offset_y,
    double limit,
    boolean enforcelimit )
```

Drag move a word, used in mousetool

Parameters:

- **pt_x**: (X coordinate) **Point** where word is
- **pt_y**: (Y coordinate) **Point** where word is
- **radius**: Radius in which to search for a word
- **offset_x**: (X coordinate) Contains horizontal and vertical distance to move
- **offset_y**: (Y coordinate) Contains horizontal and vertical distance to move
- **limit**: maximal distance word can be moved
- **enforcelimit**: whether to enforce the distance limit

```java
void lajDragWord ( Point pt,
    double radius,
    Point offset,
    double limit,
    boolean enforcelimit )
```

Drag move a word, used in mousetool

Parameters:

- **pt**: **Point** where word is
- **radius**: Radius in which to search for a word
- **offset**: Contains horizontal and vertical distance to move
- **limit**: maximal distance word can be moved
- **enforcelimit**: whether to enforce the distance limit

```java
void lajLegendDRC ( boolean bDoLineWidth,
    double dMinLineWidth,
    boolean bDoMask,
    double dMaskClearance,
```
Does DRC check on legend layers against other active layers

Parameters:

<table>
<thead>
<tr>
<th>Boolean</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bDoLineWidth</code></td>
<td>Check line width</td>
</tr>
<tr>
<td><code>dMinLineWidth</code></td>
<td>Min. line width</td>
</tr>
<tr>
<td><code>bDoMask</code></td>
<td>Check mask clearance</td>
</tr>
<tr>
<td><code>dMaskClearance</code></td>
<td>Min. mask clearance</td>
</tr>
<tr>
<td><code>bDoCu</code></td>
<td>Check outer clearance</td>
</tr>
<tr>
<td><code>dCuClearance</code></td>
<td>Min. outer clearance</td>
</tr>
<tr>
<td><code>bDoCuPads</code></td>
<td>Check copper pad clearance</td>
</tr>
<tr>
<td><code>dCuPadClearance</code></td>
<td>Min. copper pad clearance</td>
</tr>
<tr>
<td><code>bDoCuFOM</code></td>
<td>Check clearance to copper free of mask</td>
</tr>
<tr>
<td><code>dCuFOMClearance</code></td>
<td>Min. unmasked copper clearance</td>
</tr>
<tr>
<td><code>bDoCuPadsFOM</code></td>
<td>Check clearance to copper pads free of mask</td>
</tr>
<tr>
<td><code>dCuPadsFOMClearance</code></td>
<td>Min. unmasked copper pad clearance</td>
</tr>
<tr>
<td><code>bDoPlatedDrills</code></td>
<td>Check clearance to plated drills</td>
</tr>
<tr>
<td><code>dPlatedDrillClearance</code></td>
<td>Min. plated drill clearance</td>
</tr>
<tr>
<td><code>bDoUnplatedDrills</code></td>
<td>Check clearance to unplated drills</td>
</tr>
<tr>
<td><code>dUnplatedDrillClearance</code></td>
<td>Min. unplated drill clearance</td>
</tr>
<tr>
<td><code>bDoSmallDraws</code></td>
<td>Check for small objects</td>
</tr>
<tr>
<td><code>dMinDrawSize</code></td>
<td>Min. object size</td>
</tr>
</tbody>
</table>

**void lajLegendTextToWords (double `dMaxSize`,
 int `iMaxSpacing`)**

Converts text to rectangles, splitting vertical and horizontal text, on all active silk layers

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dMaxSize</code></td>
<td>maximal text size</td>
</tr>
<tr>
<td><code>iMaxSpacing</code></td>
<td>maximal letter spacing, in percent of average letter width</td>
</tr>
</tbody>
</table>
void lajMoveWord (String value,
 double dx,
 double dy
)

Move word with given uText value over distance dx, dy

Parameters:
- **value**: uText attribute value of the word to be moved
- **dx**: horizontal distance
- **dy**: vertical distance

void lajScaleWord (String value,
 double factor,
 double limit
)

Scale the word with the give uText value with the given factor, but don’t make apertures smaller than limit

Parameters:
- **value**: uText attribute value of the word to be scaled
- **factor**: scale factor
- **limit**: min. aperture size after scaling

void lajScaleWord (String value,
 double factor
)

Scale the word with the give uText value with the given factor

Parameters:
- **value**: uText attribute value of the word to be scaled
- **factor**: scale factor

void lajScaleWordOnPt (double pt_x,
 double pt_y
)

void lajScaleWord (String value,
 double factor
)

Scale the word with the give uText value with the given factor

Parameters:
- **value**: uText attribute value of the word to be scaled
- **factor**: scale factor
double pt_x,
double pt_y,
double radius,
double scale,
double limit,
boolean enforcelimit
)

Scale word nearest to point with given factor, keeping aperture larger than min. size. Used in mousetool.

Parameters:
- pt_x (X coordinate) Point where word is
- pt_y (Y coordinate) Point where word is
- radius Radius in which to search for a word
- scale factor by which to scale word
- limit min. aperture width after scaling
- enforcelimit whether to enforce the aperture size limit

void lajScaleWordOnPt (Point pt,
 double radius,
 double scale,
 double limit,
 boolean enforcelimit
)

Scale word nearest to point with given factor, keeping aperture larger than min. size. Used in mousetool.

Parameters:
- pt Point where word is
- radius Radius in which to search for a word
- scale factor by which to scale word
- limit min. aperture width after scaling
- enforcelimit whether to enforce the aperture size limit

void lajSelectAllWords ()
Select all textboxes on all active layers

void lajUndefineWord ()
Removes uText attribute from selected objects on active layers

void layActive (ObjectList layerID,
 boolean bActive
)
Sets activity on the Layer defined by layer ID

Parameters:
layerID the layer ID e.g. from `getLayers()` function

bActive true if the layer defined by layer ID will be set as active; false for remove activity on a layer defined by the layer ID

See also:
- `getLayers()`

```java
boolean layActive ( ObjectList layerID )
```

Returns activity of the Layer with the given layer ID

Parameters:
- `layerID` the layer ID e.g. from `getLayers()` function

Returns:
- `true`/`false` activity on a layer defined by the layer ID

See also:
- `getLayers()`

```java
void layActive ( boolean bActive )
```

Sets activity on the current Layer

Parameters:
- `bActive` true if the current layer will be set as active; false for remove activity on the current layer

```java
boolean layActive ( )
```

Returns activity of the current Layer

Returns:
- `true`/`false` activity of the current Layer

```java
void layAlias ( String sAlias )
```

Sets new alias to the current Layer.

Parameters:
- `sAlias` String new alias of the current Layer.

```java
String layAlias ( )
```

Returns current Layer alias.

Returns:
- current Layer alias
int layApeCount()

Return numbers of aperture on current layer

Returns:
Number of apertures on current layer. If the layer does not exist return -1

void layAttach(String sAttach)

Sets the attachment of the extra layer.

Parameters:
sAttach possible values are "top", "bottom", "none" or "both".

String layAttach()

Gets the attachment of the extra layer.

Returns:
"top", "bottom", "none" or "both".

void layAttribute(String name, String value)

Sets the given value to the given layer attribute. If the attribute exists, its value is changed to the new value. Otherwise the attribute is created. If the value is null the attribute with the given name is removed.

Parameters:
name the layer attribute name
value the layer attribute value

String layAttribute(String name)

Returns the value of the layer attribute with given name.

Parameters:
name the layer attribute name

Returns:
the value of the layer attribute with given name or null if the attribute is not defined in the layer.

String layAttribute()

Returns comma separated list of the all layer attributes. Example: "uMatReference=R-5715-4,uMatTolerance=0.0076,uMatSupplier=Ucamco,form="

Returns:
comma separated list of the all layer attributes.
void layClass (String \textit{sNewClass})

Changes class of the current layer to the new class.

Parameters:
\textit{sNewClass} Layer class, possible values are "layer", "drill" or "extra".

String layClass ()

Gets the class of current layer as a String.

Returns:
"layer", "drill" or "extra".

**void layCopperCount (boolean \textit{bUseMask},

\hspace{1em} boolean \textit{bConfirmMaskUsage})**

Calculates the copper surface in active layers.

Parameters:
\textit{bUseMask} When true, active mask layers are taken into account: The "free of mask" area's are then calculated. The mask with attachment top is used for the top outer layer. The mask with attachment bottom is used for the bottom outer layer. The mask with attachment none is used for inner layers.

\textit{bConfirmMaskUsage} When true and active mask layers exist, then asks for confirmation if active mask layers should be used, or not.

void layCopperCount ()

Calculates the copper surface in active layers.

Rectangle layEnclosingBox ()

Gets the enclosing rectangle of the current layer.

Returns:
Layer enclosing rectangle.

void layerViewSplit (boolean \textit{on})

Set variable to enable/diable displaying split lines in the Job View dialog Call repaint for the dialog Job View

Parameters:
\textit{on} if true will be Job View will be set to Split View
int layExtractPlotStamps (String dstLayName,
 String sOptions,
 ObjectList sFilters)

extract plotstamps into another layer, keep aperture an object attributes

Parameters:
 dstLayName destination layer name (if null or "" or layer with given name does not exist, returns only count)
 sOptions "TEXT" or "VTXT" or "BLO" or combination like "TEXT,VTX,BLO", also flag "DELETE" to delete original objects and "KEEPLINK" to keep link for crosslinked blocks
 sFilters list of strings to match when extracting (if no match, no extraction)(null=empty=no Filter=extract all) Example: ["%Level", "%BatchNo"]

Returns:
 nr. of found objects

void layFrom (int layFrom)

Sets the layer number where the drill holes start.

Parameters:
 layFrom layer number where the drill holes start.

int layFrom ()

Gets the layer number where the drill holes start.

Returns:
 the layer number where the drill holes start.

boolean layHasPattern (boolean bUsed)

Returns true if the layer has an aperture with a pattern.

Parameters:
 bUsed pattern is used when it affects the image.

Returns:
 true if the layer has an aperture with a pattern.

ObjectList layID ()

Returns ObjectArray with the current layer specification

Returns:
 ObjectArray with layer specification (name, class, subclass, attachment, index, activity, number of apertures) Example: ["cad_m1", "extra", "mask", "bottom", 1, true, -1]
`void layIndex (int iIndex)`

Sets the index of the current layer in the array of layers in the job this layer belongs to.

Parameters:

- `iIndex` the new index of the current layer in the array of layers in the job this layer belongs to.

`int layIndex ()`

Gets the index of the current layer in the array of layers in the job this layer belongs to.

Returns:

- the index of the current layer in the array of layers in the job this layer belongs to. -1 if the current layer is not set.

`void layInfo (String sText)`

Sets the information to the current layer

Parameters:

- `sText` String containing the information about the layer

`String layInfo ()`

Gets the information associated with the current layer.

Returns:

- the information associated with the current layer. `null` if the current layer is not set.

`void layMaterial (String sMaterial)`

Sets the layer material (extra or layer class).

Parameters:

- `sMaterial` the new layer material.

`String layMaterial ()`

Gets the layer material (extra or layer class).

Returns:

- the layer material (extra or layer class). `null` if the current Layer is not set.
void layName (String sName)

Sets new name to the current Layer.

Parameters:

sName String new name of the current Layer.

String layName ()

Returns current Layer name.

Returns:

current Layer name

void layNumber (int iNumber)

Sets the layer number in the group of extra layers with the same class, subclass and attach.

Parameters:

iNumber the new layer number in the group of extra layers with the same class, subclass and attach.

int layNumber ()

Gets the layer number in the group of extra Layers with the same class, subclass and attach.

Returns:

the layer number in the group of extra Layers with the same class, subclass and attach. -1 if the current Layer is not set.

void layReadable (String sSide)

Sets the side where this layer is readable.

Parameters:

sSide String "top" or "bottom".

String layReadable ()

Gets the side where this layer is readable.

Returns:

"top" or "bottom".

void layReverse (boolean bReverse)

Sets the reverse flag for the current Layer.
Parameters:

bReverse boolean true if the layer has negative data. (Its polarity is opposite compared to the produced copper image.)

boolean layReverse ()

Has the layer negative data?

Returns:

true if the layer has negative data. (Its polarity is opposite compared to the produced copper image.)

boolean laySelection ()

Checks if the current Layer contains selected items.

Returns:

true if there are selections, false otherwise.

Rectangle laySelectionEnclosingBox ()

Gets the enclosing rectangle of the selection of the current layer.

Returns:

Layer selection enclosing rectangle.

void laySubClass (String sSubClass)

Sets the subclass of current layer.

Parameters:

sSubClass String the default subclasses offered by Ucam are "rout", "silk", "mask", "paste", "exclusion", "netref", "frame", "testpoints", "guideplate" and "probe".

String laySubClass ()

Gets the subclass of current layer. The default subclasses offered by Ucam are "rout", "silk", "mask", "paste", "exclusion", "netref", "frame", "testpoints", "guideplate" and "probe".

Returns:

the subclass of current layer eg. "rout", "silk", "mask", "paste", "exclusion", "netref", "frame", "testpoints", "guideplate" and "probe".

void layThickness (double dThickness)

Sets the thickness of the current layer.

Parameters:

dThickness double the thickness of the current layer.
double layThickness ()

Gets the thickness of the current layer.

Returns:
the thickness of the current layer.

void layTo (int layTo)

Sets the layer number where the drill holes end.

Parameters:
layTo layer number where the drill holes end.

int layTo ()

Gets the layer number where the drill holes end.

Returns:
the layer number where the drill holes end.

double layZPos ()

Return the x position of the current layer.

Returns:
the x position of the current layer.

void liftUpUpcbBlocks ()

Lift up blocks with uPcb attribute to the begin of the layer. Image is kept.

Line Line (double ptFromX, double ptFromY, double ptToX, double ptToY, String units)

Create line from four coordinates

Parameters:
ptFromX start point x coordinate
ptFromY start point y coordinate
ptToX line end point x coordinate
create line from four coordinates

Parameters:
\- ptFromX: start point x coordinate
\- ptFromY: start point y coordinate
\- ptToX: line end point x coordinate
\- ptToY: line end point y coordinate

Returns:
the line

create copy of a line

Parameters:
\- line: original line

Returns:
the line

create line from two points

Parameters:
\- ptFrom: line start point
\- ptTo: line end point

Returns:
the line

listFrames ()

Lists names of all custom dialogs

Returns:
Object Array with custom dialogs names. Name can be used in openFrame command.

See also:
openFrame(String)

```java
void loadApertures ( String sDpfFile )
```

Aperture Manager: Load Apertures from a DPF File

Parameters:
- `sDpfFile` DPF File to read Apertures from

```java
void loadBuildup ( String buildupSpec )
```

Loads the buildup from the given .jot file into the current job. The layer names of the current job are overwritten.

Parameters:
- `buildupSpec` the .jot file path with the buildup content to be loaded.

```java
void loadFrames ( boolean bVerbose, boolean bLoadOnce )
```

Loads all custom dialogs (dialogs extending CustomFrame class).

Parameters:
- `bVerbose` detailed information about loading is visible if set to true
- `bLoadOnce` Load dialog only once if set to true. A false value is useful when a dialog is under development and needs to be loaded every time the command is used in script.

See also:
- CustomFrame

```java
void loadFrames ( )
```

Loads all custom dialogs (dialogs extending CustomFrame class).

See also:
- loadFrames(boolean, boolean)
- loadFrames(boolean, boolean)

```java
void loadSplitConfig ( String sConfigName )
```

Load split configuration for the given name

Parameters:
- `sConfigName` name of configuration
void loadUFD (String sUFDName)

Loads all the faults from the given file into the current fault database.

Parameters:
- `sUFDName` UFD file specification

void loadWorkspace (String sWorkspaceName)

Discard modifications and reload current layout. NOTE: The same as menu command Workspaces > `workspace_name`

Parameters:
- `sWorkspaceName`

void loadWorkspace ()

Discard modifications and reload current layout. NOTE: The same as menu command Workspaces > Reload

double maxInvalidArcsDeviation ()

Find and return maximal deviation of all (selected) invalid arcs. The deviation is from distance Center point to To point or Center point to From point. Current units will be used.

Returns:
- Maximal deviation in current units of all (selected) invalid arcs

int measureFingers (String szOption)

Measure gold fingers (ASE)

Parameters:
- `szOption` The given options: "attribute" or "selection"

Returns:
- 0: ok, 1: an error occurred

void measureLayers ()

Measure dimensions of active selection

void measureObjects (double p1_x, double p1_y, double p2_x, ...)
Measure clearance between objects Results are displayed in Numbers dialog

Parameters:
- `p1_x` (X coordinate) flashpoint of first object
- `p1_y` (Y coordinate) flashpoint of first object
- `p2_x` (X coordinate) flashpoint of second object
- `p2_y` (Y coordinate) flashpoint of second object

```java
void measureObjects ( Point p1, Point p2 )
```

Measure clearance between objects Results are displayed in Numbers dialog

Parameters:
- `p1` flashpoint of first object
- `p2` flashpoint of second object

```java
void measurePoints ( double pt_x, double pt_y )
```

Sets the point1 and point2 in Numbers dialog as the same point

Parameters:
- `pt_x` (X coordinate) first and the same second point
- `pt_y` (Y coordinate) first and the same second point

```java
void measurePoints ( Point pt )
```

Sets the point1 and point2 in Numbers dialog as the same point

Parameters:
- `pt` first and the same second point

```java
void measurePoints ( double p1_x, double p1_y, double p2_x, double p2_y )
```

Measure clearance between points Results are displayed in Numbers dialog

Parameters:
- `p1_x` (X coordinate) first object
- `p1_y` (Y coordinate) first object
void measurePoints (Point p1,
 Point p2)

Measure clearance between points Results are displayed in Numbers dialog

Parameters:
 p1 first object
 p2 second object

void mergeContours ()

Merge Contours

void mergeContoursSingle ()

Merge Contours Single

void mergeContoursSingleAdd ()

Merge Contours Single Add

void mergeLayers (String posNegAlt,
 boolean delLay)

Merge Layer(s)

Parameters:
 posNegAlt Merge option ("Positive", "Negative" or "Alternate")
 delLay if true, delete merged layers

void mirror (String axis,
 boolean bUseCenter,
 boolean bOnRefPoints)

Mirror selections around axis

Parameters:
 axis Value of the axis (X or Y)
 bUseCenter If true, mirror is done around center
If true, mirror is also applied to reference points

```java
void models ( String sModelShape,
              double dTolerance
        )
```

Models replace selected painted shape on active layers by standard or complex shape

Parameters:
- `sModelShape` Shape of selected model: standard or complex
- `dTolerance` tolerance to be used when searching for model instances

See also:
- `models(String)`
- `models(String)`

```java
void models ( String sModelShape )
```

Models replace selected painted shape on active layers by standard or complex shape try count the best tolerance to be used when searching for model instances.

Parameters:
- `sModelShape` Shape of selected model: standard or complex

See also:
- `models(String, double)`
- `models(String, double)`

```java
boolean modelsCreateComplex ( )
```

modelsCreateComplex Create complex aperture with the same shape like selected objects. the function `modelsDefineSelections()` must be call before

Returns:
- a status, if the complex aperture was created, the status is true

See also:
- `models(String)`
- `models(String, double)`

```java
boolean modelsCreateStandard ( double dTolerance )
```

modelsCreateStandard Try find a standard aperture looks like selected object. the function `modelsDefineSelections()` must be call before

Parameters:
- `dTolerance` a tolerance

Returns:
a status, if a aperture was found, the status is true

See also:
 models(String)
 models(String, double)

Rectangle modelsDefineSelections ()

modelsDefineSelections Define selected part of active layer in plane 1. This function must be run before other functions from the dialog models.

Returns:
 enclosing box (rectangle) of the temporary layer

See also:
 models(String)
 models(String, double)

int modelsReplace (double pntTolerance_x, double pntTolerance_y)

modelsReplace Replace selected objects by created models in active layer in plane 1. the function modelsDefineSelections() must be call before

Parameters:
 pntTolerance_x (X coordinate) a tolerance
 pntTolerance_y (Y coordinate) a tolerance

Returns:
 returns a count of replaced apertures; -1 an error

See also:
 models(String)
 models(String, double)

int modelsReplace (Point pntTolerance)

modelsReplace Replace selected objects by created models in active layer in plane 1. the function modelsDefineSelections() must be call before

Parameters:
 pntTolerance a tolerance

Returns:
 returns a count of replaced apertures; -1 an error

See also:
 models(String)
 models(String, double)
```c
int modelsSelect (double pntTolerance_x,
                 double pntTolerance_y)
```

modelsSelect Select object. the function `modelsDefineSelections()` must be called before.

Parameters:
- `pntTolerance_x` (X coordinate) a tolerance
- `pntTolerance_y` (Y coordinate) a tolerance

Returns:
- number of selected objects

See also:
- `models(String)`
- `models(String, double)`

```c
int modelsSelect (Point pntTolerance)
```

modelsSelect Select object. the function `modelsDefineSelections()` must be called before.

Parameters:
- `pntTolerance` a tolerance

Returns:
- number of selected objects

See also:
- `models(String)`
- `models(String, double)`

```c
void modifyCore (int iTopLay,
                 String sAtt,
                 int iNewTopLay,
                 int iNewBotLay,
                 String sNewAtt,
                 double dThickness,
                 String sMaterial,
                 String sInfo)
```

Modify Core

Parameters:
- `iTopLay` Top Layer index the Core is connected to
- `sAtt` The attachment for this core.
- `iNewTopLay` The new top Layer index the Core is connected to
- `iNewBotLay` The new bottom Layer index the Core is connected to
- `sNewAtt` Defines the attachment for this core "top", "bottom", "both" or "none".
- `dThickness` Defines the thickness for this core.
- `sMaterial` Defines the material for this core.
void modifyDrill (String sName,
String sAlias,
String sClass,
String sSubClass,
int iFrom,
int iTol,
double dThickness)

Modify Drill

Parameters:
 sName new layer name
 sAlias new alias
 sClass class of the changed layer - "Layer", "Drill" or "Extra"
 sSubClass subclass of the changed layer
 • for class "Layer" - "outer", "inner", "mixed"
 • for class "Drill" - "drill", "buried", "blind", "plated", "unplated", "fixing"
 • for class "Extra" - "rout", "score", "outline", "mask", "silk", "clipping", "coupon",
 "netref", "testpoints", "midpoints", "probe", "guideplate", "frame", "bolref", "bolinsp",
 "resistor", "dro", "snapshot", "help", "adjacency"
 iFrom index of the first drilled layer from top
 iTol index of the last drilled layer from top
 dThickness thickness of the modified layer

void modifyExtra (String sName,
String sAlias,
String sClass,
String sSubClass,
String sAttach,
int iNumber,
boolean bReverse,
String sMaterial)

Modify Extra layer

Parameters:
 sName new layer name
 sAlias new alias
 sClass class of the changed layer - "Layer", "Drill" or "Extra"
 sSubClass subclass of the changed layer
 • for class "Layer" - "outer", "inner", "mixed"
 • for class "Drill" - "drill", "buried", "blind", "plated", "unplated", "fixing"
 • for class "Extra" - "rout", "score", "outline", "mask", "silk", "clipping", "coupon",
 "netref", "testpoints", "midpoints", "probe", "guideplate", "frame", "bolref", "bolinsp",
 "resistor", "dro", "snapshot", "help", "adjacency"
void modifyFeedback (String sName,
 String sAlias,
 String sClass,
 String sSubClass,
 String sAttach)

Modify Feedback layer

Parameters:
- **sName** new layer name
- **sAlias** new alias
- **sClass** class of the changed layer - "Layer", "Drill" or "Extra"
- **sSubClass** subclass of the changed layer
 - for class "Layer" - "outer", "inner", "mixed"
 - for class "Drill" - "drill", "buried", "blind", "plated", "unplated", "fixing"
- **sAttach** Attach - "top" or "bottom", "none"

void modifyLayer (String sName,
 String sAlias,
 String sClass,
 String sSubClass,
 int iNumber,
 boolean bReverse,
 double dZPosition,
 String sReadable,
 String sMaterial,
 double dThickness)

Modify signal Layer

Parameters:
- **sName** new layer name
- **sAlias** new alias
- **sClass** class of the changed layer - "Layer", "Drill" or "Extra"
- **sSubClass** subclass of the changed layer
 - for class "Layer" - "outer", "inner", "mixed"
 - for class "Drill" - "drill", "buried", "blind", "plated", "unplated", "fixing"
void modifyPrePreg (int iTopLay,
 int iIndex,
 int iNewTopLay,
 int iNewBotLay,
 int iNewIndex,
 double dThickness,
 String sMaterial,
 String sInfo)

Modify PrePreg

Parameters:

iTopLay Top Layer index the PrePreg is connected to
iIndex Index of the PrePreg in PrePreg stack up.
iNewTopLay The new top Layer index the PrePreg is connected to
iNewBotLay The new bottom Layer index the PrePreg is connected to
iNewIndex The new index of the PrePreg in PrePreg stack up.
dThickness Defines the thickness for this PrePreg.
sMaterial Defines the material for this PrePreg.
sInfo Defines the description/info for this PrePreg.

void move (double pt_x,
 double pt_y,
 boolean bOnRefPoints)

Move (selected) object(s) using board coordinates

Example:

setInPlane(1,1);
direction("");
move(100,200,false);
move(100,200,false);
doMove(100,200);

direction("h");
move(100,200,false);
move(100,200,false);
doMove(100,200);

direction("v");
move(100,200,false);
move(100,200,false);
doMove(100,200);

Parameters:
pt_x (X coordinate) Offset (vector) where to create the copy of the source objects

See also:
com.barco.ets.ucam.hypershell.HyperShell::doMove(Upoint)
com.barco.ets.ucam.hypershell.HyperShell::direction(String)

Parameters:
pt_y (Y coordinate) Offset (vector) where to create the copy of the source objects

See also:
com.barco.ets.ucam.hypershell.HyperShell::doMove(Upoint)
com.barco.ets.ucam.hypershell.HyperShell::direction(String)

Parameters:
bOnRefPoints If true, move is also applied to reference points

```java
void move ( Point pt,
            boolean bOnRefPoints )
```

Move (selected) object(s) using board coordinates

Example:

```java
setInPlane(1,1);
direction("");
move(100,200,false);
move(100,200,false);
doMove(100,200);

direction("h");
move(100,200,false);
move(100,200,false);
doMove(100,200);

direction("v");
move(100,200,false);
move(100,200,false);
doMove(100,200);
```

Parameters:
pt Offset (vector) where to create the copy of the source objects

See also:
com.barco.ets.ucam.hypershell.HyperShell::doMove(Upoint)
com.barco.ets.ucam.hypershell.HyperShell::direction(String)

Parameters:
bOnRefPoints If true, move is also applied to reference points

```java
void netlistBuild ( String target )
```

Build Netlist

Parameters:
target Netlist target (job or layer) "job" - Builds netlist information for the whole job. All layers are used, whether they are active or not. Layers not yet in memory are loaded automatically. "layer" - Builds netlist information for the job. Only active layers are used.
void netlistClear ()

Clear Netlist Removes all netlist information from a job.

void netlistReference (String target)

Create Netlist reference

Parameters:
 target Netlist reference target (job or layer)

void newJob (String jobPath,
 String jobName)

Create a new job with the given name. The directory is automatically created if necessary. If the job already exists, a warning will be given and the existing job will be loaded.

Parameters:
 jobPath The pathname for the job file
 jobName The name of the job. The suffix .job will be omitted.

void notImplemented (String sFuncName)

Method warns that the HSH command does not exist

Parameters:
 sFuncName function name

void objAttribute (String name,
 String value)

Sets the given value to the given object attribute. If the attribute exists, its value is changed to the new value. Otherwise the attribute is created. If the value is null the attribute with the given name is removed.

Parameters:
 name attribute name
 value attribute value

String objAttribute (String name)

Returns the value of the object attribute with given name.

Parameters:
String objAttribute ()

Returns comma separated list of the all object attributes. Example: ".out_scale=,nominal_y=yscale,.edgeline="

Returns: comma separated list of the all object attributes.

Point objCenterPoint ()

Returns the center point of the Arc

Returns: Point the arc center point

double objClearance ()

Measures clearance between two objects

Returns: double value is clearance between two objects.

Rectangle objEnclosingBox ()

Returns enclosing rectangle of the current object

Returns: Rectangle enclosing rectangle of the current object

Point objFlash ()

Returns flash point of the Flash or Vector Text

Returns: Point the object flash point

Point objFromPoint ()

Returns the first point of the Draw or Arc

Returns: Point the first draw/arc point
String objInfo ()

Prints information about object

Returns:

Returns current object info

int objNet ()

Returns object net number

Returns:

int net number

Point objPoint ()

Returns flash point of Flash or VText objects or the first point of the Draw or Arc

Returns:

Point object flash point or the first draw/arc point

double objRing ()

Measures inner clearance (ring) between two objects.

Returns:

A constant Not-a-Number (NaN) value when error, double value is clearance between two objects. Negative value means that second object is inside the first object.

void objSelect (String sel)

Selects/deselects the object according to given parameter.

Parameters:

sel
"+" for select the object or "-" deselect the object

boolean objSelect ()

Returns true if the object is selected.

Returns:

boolean true if the object is selected

String objSense ()
Returns the sense of **Arc**

Returns:
String "cw" for ClockWise or "ccw" Counter-ClockWise, null if the Object is not **Arc**.

String `objShape()`

Returns shape of the object Aperture

Returns:
String possible values are "cir", "rec", "box", "oct", "con", "com", "the", "txt", "blo", "squa" and "don"

void `objString(String vtxString)`

Sets the String value of the VTX object

Parameters:
- `vtxString` new string value in current VTX object

String `objString()`

Returns the String of the VTX object

Returns:
the String of the VTX object

Point `objToPoint()`

Returns the last (to) point of the Draw or **Arc**

Returns:
`Point` the last (to) draw/arc point

String `objType()`

Returns object type

Returns:
Possible values are "arc", "dra", "reg", "fla" or "vtx".

void `offset(double offset_x, double offset_y)`

Sets the Offset Used in Numbers Dialog

Parameters:
- `offset_x` (X coordinate) the Offset
void offset (Point offset)

Sets the Offset Used in Numbers Dialog

Parameters:
offset the Offset

Point offset()

Gets the Offset Used in Numbers Dialog

Returns:
Offset

void offsetX (double offsetX)

Sets the Offset x coordinate Used in Numbers Dialog

Parameters:
offsetX the Offset x coordinate

void offsetY (double offsetY)

Sets the Offset y coordinate Used in Numbers Dialog

Parameters:
offsetY the Offset y coordinate

void openAboutUcamco()

Opens ucamco website. (There is no closing function, since it is not strictly a dialog)

void openAboutUcamX()

Opens Ucam X product website. (There is no closing function, since it is not strictly a dialog)

void openAdvantools()

show Advantools
void openAMLIJobManager()
open AMLI Job Manager

void openAnamorphicScale()
show AnamorphicScale dialog

void openApeCreator()
open Aperture Creator

void openApeEditor()
open Aperture Editor

void openApertureAttributes()
show Aperture Attributes dialog

void openApertureManager()
show Aperture Manager dialog

void openAttributeEditor()
show Attribute Editor dialog

void openAttributeManager()
show Attribute Manager dialog

void openAutoDrill()
show AutoDrill dialog

void openAutoDrillEditor()
Show AutoDrill Editor
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>void openAutoFixture()</code></td>
<td>Show AutoFixture dialog</td>
</tr>
<tr>
<td><code>void openBarcode()</code></td>
<td>Show Barcode dialog</td>
</tr>
<tr>
<td><code>void openBarcode128()</code></td>
<td>Show Barcode 128 dialog</td>
</tr>
<tr>
<td><code>void openBoardAnalyzer()</code></td>
<td>Show Board Analyzer dialog</td>
</tr>
<tr>
<td><code>void openBoardSnapshot()</code></td>
<td>Show Board Snapshot dialog</td>
</tr>
<tr>
<td><code>void openCalculatorSetup()</code></td>
<td>Show Calculator Setup dialog</td>
</tr>
<tr>
<td><code>void openCamtek(String sMachineCfg)</code></td>
<td>Show Camtek dialog</td>
</tr>
<tr>
<td>Parameters:</td>
<td></td>
</tr>
<tr>
<td><code>sMachineCfg</code></td>
<td></td>
</tr>
<tr>
<td><code>void openCFMEEOutput()</code></td>
<td>Open the CFMEE output dialog</td>
</tr>
<tr>
<td><code>void openCheckList()</code></td>
<td>Show CheckList Dialog</td>
</tr>
</tbody>
</table>
void openCheckListDefineChecklist ()
Show "CheckList: Define Checklist" Dialog

void openCheckListDefineSteps ()
Show "CheckList: Define Steps" Dialog

void openClipping ()
show Clipping dialog

void openColor ()
Show Color dialog

void openConnect ()
show Connect dialog

void openContourHandling ()
show Contour Handling dialog

void openConvertAttributes ()
show Attribute Converter dialog

void openCopperBalance ()
open Copper Balance Dialog

void openCopperRepair ()
show Copper Repair dialog

void openCoverlayOptimizer ()
show Coverlay Optimizer dialog
void openCU9000Dialog ()
Open DS DI output dialog

void openDatums ()
show Datums dialog

void openDistort ()
show Distort dialog

void openDraw (double pt_x,
 double pt_y,
 double dis)
Open a draw. Inserts a break
Parameters:
 pt_x (X coordinate) Open location
 pt_y (Y coordinate) Open location
 dis The clearance between the two endpoints of the open

void openDraw (Point pt,
 double dis)
Open a draw. Inserts a break
Parameters:
 pt Open location
 dis The clearance between the two endpoints of the open

void openDrawSlots ()
show Draw Slots Dialog

void openDRC ()
show DRC dialog
void openDrillInfo ()
 show Drill Info dialog

void openDrillMap ()
 open Drill Map Dialog

void openDrillOptimizer ()
 open Smart Drill Optimizer

void openDrillRoutSetups ()
 Show Drill/Rout Setups dialog

void openDrillTolerance ()
 Show Drill Tolerance dialog

void openDrillToolManager ()
 show Drill Tool Manager

void openDsAoi ()
 Open DS AOI dialog

void openDsAoiAdvanced ()
 Open DS AOI Advanced dialog (no closing function yet)

void openDSAOIIALOG ()
 Open DS AOI output dialog

void openDsAoiPreview ()
 Open DS AOI dialog
void openDsAoiQueue ()

Open DS AOI Queue dialog (no closing function yet)

void openEditingToolbox ()

show Editing Toolbox dialog

void openEditVectorText (double pickPoint_x, double pickPoint_y)

show Edit Vector Text dialog

Parameters:

 pickPoint_x (X coordinate)
 pickPoint_y (Y coordinate)

void openEditVectorText (Point pickPoint)

show Edit Vector Text dialog

Parameters:

 pickPoint

void openErrors ()

show Errors dialog

void openEtchCompensation ()

show Etch Compensation dialog

void openExpand ()

show Expand dialog

void openExternalLinkManager ()

show External Link Manager
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>void openFiducials ()</code></td>
<td>show Fiducials dialog</td>
</tr>
<tr>
<td><code>void openFillAngledPattern ()</code></td>
<td>open Fill Angled Pattern Dialog</td>
</tr>
<tr>
<td><code>void openFillPattern ()</code></td>
<td>open Fill Pattern Dialog</td>
</tr>
<tr>
<td><code>void openFillVector ()</code></td>
<td>open Fill Vector Dialog</td>
</tr>
<tr>
<td><code>void openFlashMaker ()</code></td>
<td>show FlashMaker dialog</td>
</tr>
<tr>
<td><code>void openFlexManager ()</code></td>
<td>open uFlex Manager</td>
</tr>
<tr>
<td><code>void openFlipJob ()</code></td>
<td>show Flip Job dialog</td>
</tr>
<tr>
<td><code>void openFrame (String sFrameName)</code></td>
<td>Opens custom dockable frame with given identification</td>
</tr>
<tr>
<td>Parameters:</td>
<td></td>
</tr>
<tr>
<td><code>sFrameName</code></td>
<td>identification frame given by getFrameID() method of CustomFrame class</td>
</tr>
<tr>
<td><code>void openGridParameters ()</code></td>
<td>show Grid Parameters dialog</td>
</tr>
<tr>
<td>Function Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>void openHelp ()</td>
<td>Opens the application's documentation. (There is no closing function, since it is not strictly a dialog)</td>
</tr>
<tr>
<td>void openHelpOnHelp ()</td>
<td>Opens help documentation. (There is no closing function, since it is not strictly a dialog)</td>
</tr>
<tr>
<td>void openHelpOnHypertool ()</td>
<td>Opens hypertool documentation. (There is no closing function, since it is not strictly a dialog)</td>
</tr>
<tr>
<td>void openHelpOnResources ()</td>
<td>Opens resource's documentation. (There is no closing function, since it is not strictly a dialog)</td>
</tr>
<tr>
<td>void openHelpOnVersion ()</td>
<td>Opens version documentation. (There is no closing function, since it is not strictly a dialog)</td>
</tr>
<tr>
<td>void openHiPot ()</td>
<td>show HiPot dialog</td>
</tr>
<tr>
<td>void openImageCompare ()</td>
<td>show Image Compare dialog</td>
</tr>
<tr>
<td>void openImpedanceControl ()</td>
<td>show Impedance Control dialog</td>
</tr>
<tr>
<td>void openImportIPC356 ()</td>
<td>show Import IPC356 dialog (no closing command)</td>
</tr>
<tr>
<td>void openImportMET ()</td>
<td>show Import MET dialog (no closing command)</td>
</tr>
</tbody>
</table>
void openImportODBxx ()
show Import ODBxx Steps dialog

void openImportWF ()
show Import WF dialog (no closing command)

void openInsertContourText ()
show Insert Contour Text dialog

void openInsertVectorText ()
show Insert Vector Text dialog

void openJob (String jobName)
Open the job with the given name. In case the job does not exist, a warning will be given and an empty new job will be loaded.

Parameters:
jobName The full name of the job including the path.

void openJob_shm (String sShmName)
read job from shared memory

Parameters:
sShmName - Name of the shared memory

void openJobCreate ()
Show create job dialog (no close)

void openJobDefinition ()
show Job Definition dialog

void openJobEdit ()
void openJobEditor ()
Show Job Editor dialog

void openJobEditorOptions ()
Show Job Editor Options dialog

void openJobLoad ()
Show open job dialog (no close)

void openJobMerge ()
show Job Merge dialog

void openJobPlaneSetup ()
Show Job Plane Setup dialog

void openJobPrint ()
Show Job Print dialog

void openJobView ()
show Job View dialog

void openLayerEdit ()
opens Layer Modify dialog

void openLegendOptimizer ()
show Legend Optimizer dialog
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>void openLicenseHelp()</code></td>
<td>Opens license agreement help. (There is no closing function, since it is not strictly a dialog)</td>
</tr>
<tr>
<td><code>void openLoadCheckList()</code></td>
<td>show Load CheckList Dialog</td>
</tr>
<tr>
<td><code>void openMagnifier()</code></td>
<td>show Magnifier window</td>
</tr>
<tr>
<td><code>void openMarkupAssistant()</code></td>
<td>open Markup Assistant</td>
</tr>
<tr>
<td><code>void openMessages()</code></td>
<td>show Messages log window</td>
</tr>
<tr>
<td><code>void openMLIOutput()</code></td>
<td>open MLI Output dialog</td>
</tr>
<tr>
<td><code>void openModels()</code></td>
<td>show Models dialog</td>
</tr>
<tr>
<td><code>void openNetCompare()</code></td>
<td>show Net Compare dialog</td>
</tr>
<tr>
<td><code>void openNetfixSetup()</code></td>
<td>show UTest dialog</td>
</tr>
<tr>
<td><code>void openNonFunctionalPad()</code></td>
<td>show Non-Functional pads dialog</td>
</tr>
</tbody>
</table>
void openNumbers ()
show Numbers dialog

void openObjectAttributes ()
show Object Attributes dialog

void openObjectCompare ()
show Object Compare dialog

void openOutputAccumatch ()
Open Accumatch Output dialog

void openOutputAOI ()
Open AOI Output dialog

void openOutputCAD ()
show Output CAD dialog

void openOutputCamtek ()
Open Camtek Output dialog

void openOutputDrillRout (String sDrillMachine)
show Output Drill/Rout dialog
Parameters:
 sDrillMachine

void openOutputDsDi ()
Open DS DI output dialog
void openOutputDsDiPreview (
)
Open DS DI Preview dialog

void openOutputDsDiQueue (
)
Open DS DI queue dialog (no closing function yet)

void openOutputNetlist ()
show Output Netlist dialog

void openOutputOrbot ()
Open Orbot Output dialog

void openOutputSapphire ()
Open Sapphire Output dialog

void openOutputScoring ()
show Output Scoring dialog

void openOutputSmartArgos ()
Open SmartArgos Output dialog

void openOutputTrackscan ()
Open Trackscan Output dialog

void openOutputUxpAutomanager ()
Open Output UXP Automanager dialog

void openOutputUxpEtec ()
Open Output UXP Etec dialog
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>void openOutputUxpLocal()</td>
<td>Open Output UXP Local dialog (no closing function yet)</td>
</tr>
<tr>
<td>void openPanelFramesCoupons()</td>
<td>Show Panel Frames Coupons dialog</td>
</tr>
<tr>
<td>void openPanelLinks()</td>
<td>Show Panel Links dialog</td>
</tr>
<tr>
<td>void openPanelPlus()</td>
<td>show PanelPlus dialog</td>
</tr>
<tr>
<td>void openPanelReproduce()</td>
<td>show Panel Reproduce dialog</td>
</tr>
<tr>
<td>void openPanelSetup()</td>
<td>Show Panel Setup dialog</td>
</tr>
<tr>
<td>void openPanelStepRepeat()</td>
<td>show Panel Step Repeat dialog</td>
</tr>
<tr>
<td>void openPlaneAdjuster()</td>
<td>show Plane Adjuster dialog</td>
</tr>
<tr>
<td>void openPlotParameters()</td>
<td>show Plot Parameters dialog</td>
</tr>
<tr>
<td>void openPPMonitor()</td>
<td></td>
</tr>
</tbody>
</table>
show PPMonitor dialog

```java
void openProductionStagesEditor ()
show Production Stages Editor dialog
```

```java
void openQueryNet ()
show Query net dialog
```

```java
void openQueryObject ()
show Query Object dialog
```

```java
void openReferencePoints ()
show Reference Points dialog
```

```java
void openRegister ()
show Register dialog
```

```java
void openRemoveAttributes ()
show Remove Attributes dialog
```

```java
void openRepair (String szLabname)
Show Repair dialog

Parameters:
  szLabname
```

```java
void openRoutManager ()
show Rout Manager dialog
```

```java
void openRoutManagerCleanUp ()
show Rout Manager dialog on Clean Up page
```
<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>void openRoutManagerDimensioning()</code></td>
<td>show Rout Manager dialog on Dimensioning page</td>
</tr>
<tr>
<td><code>void openRoutManagerEditor()</code></td>
<td>show Rout Manager dialog on Editor page</td>
</tr>
<tr>
<td><code>void openRoutManagerTools()</code></td>
<td>show Rout Manager dialog on Tools page</td>
</tr>
<tr>
<td><code>void openSaveJobAs()</code></td>
<td>Open Save Current job as...</td>
</tr>
<tr>
<td><code>void openSaveLayout()</code></td>
<td>show Save Window Layout dialog</td>
</tr>
<tr>
<td><code>void openSecureEtchCompensation()</code></td>
<td>show Secure Etch Compensation dialog</td>
</tr>
<tr>
<td><code>void openSelections()</code></td>
<td>show Selections dialog</td>
</tr>
<tr>
<td><code>void openSetupOptions()</code></td>
<td>Show Setup Options dialog</td>
</tr>
<tr>
<td><code>void openSetupSave()</code></td>
<td>Show Save dialog</td>
</tr>
<tr>
<td><code>void openShavePads()</code></td>
<td></td>
</tr>
</tbody>
</table>
void openSignalLayerAdjuster()
show Signal Layer Adjuster dialog

void openSignalLayerAdjusterAssistant()
show Signal Layer Adjuster Assistant dialog

void openSilkOptimizer()
open Silk Optimizer

void openSmartCamtek(String sMachineCfg)
show SmartCamtek dialog
Parameters:
sMachineCfg

void openSmartDRC()
show Smart DRC dialog

void openSmartFix()
open SmartFix dialog

void openSmartplot()
Open Smartplot dialog

void openSmartSR()
Show Smart S&R dialog

void openSmartStart()
show Smart Start dialog
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>void openSoldermask()</code></td>
<td>open Soldermask Dialog</td>
</tr>
<tr>
<td><code>void openSoldermaskOptimizer()</code></td>
<td>open Soldermask Optimizer Dialog</td>
</tr>
<tr>
<td><code>void openTearDrop()</code></td>
<td>open Tear Drop Dialog</td>
</tr>
<tr>
<td><code>void openTechnicalAnalyzer()</code></td>
<td>show Technical Analyzer dialog</td>
</tr>
<tr>
<td><code>void openTestpointEdit()</code></td>
<td>show Testpoint edit dialog</td>
</tr>
<tr>
<td><code>void openToolbarManager()</code></td>
<td>show Toolbar Manager Dialog</td>
</tr>
<tr>
<td><code>void openToolbars()</code></td>
<td>show Toolbars Dialog</td>
</tr>
<tr>
<td><code>void openTransformObjects()</code></td>
<td>show Transform Objects dialog</td>
</tr>
<tr>
<td><code>void openTransformObjectsBGAPads()</code></td>
<td>show Transform Objects BGA Pads dialog</td>
</tr>
<tr>
<td><code>void openTransformObjectsBGATracks()</code></td>
<td>show Transform Objects BGA Tracks dialog</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td><code>void openTransformObjectsEdit()</code></td>
<td>show Transform Objects Edit dialog</td>
</tr>
<tr>
<td><code>void openTransformObjectsRescale()</code></td>
<td>show Transform Objects Rescale dialog</td>
</tr>
<tr>
<td><code>void openUcamDbEditor()</code></td>
<td>Show Ucamdb Editor dialog</td>
</tr>
<tr>
<td><code>void openUndoRedoDetails()</code></td>
<td>show Undo/Redo Details</td>
</tr>
<tr>
<td><code>void openUTest()</code></td>
<td>show UTest dialog</td>
</tr>
<tr>
<td><code>void openUtestUtilities()</code></td>
<td>Show Utest Utilities dialog</td>
</tr>
<tr>
<td><code>void openValidateLayer()</code></td>
<td>show Layer Validation dialog (or not, if everything is fine)</td>
</tr>
<tr>
<td><code>void openVectorTextFont()</code></td>
<td>show Vector Text Font dialog</td>
</tr>
<tr>
<td><code>void openVerifyArcsDraws()</code></td>
<td>show Verify Arcs and Draws dialog</td>
</tr>
</tbody>
</table>
void openViewGuide ()
show View Guide dialog

void openYsphotechOutput ()
Open the Ysphotech output dialog

void optimizeDrill (int nPasses,
int optMode,
double yxTime)
Tools->Tooling->SmartDrill Optimize

Parameters:
 nPasses - Number of Passes
 optMode - Optimize Method: Path Length or Drill Time
 yxTime - Time Ratio Y/X, used for Drill Time Optimize Method

void optimizeMaskLayer (double dMinRing,
 double dMaxRing,
 double dMaskToCopper,
 double dMaskToMask,
 double dBigRing)
Optimize Soldermask layer

Parameters:
 dMinRing - The minimum value accepted by the ring for adding mask to the copper pad.
 dMaxRing - The value of the ring around the copper pad which is used to start searching for
 solder mask pad.
 dMaskToCopper - The minimum clearance that is still legal between a pad of the mask layer and
 copper on the copper layer.
 dMaskToMask - The minimum clearance that is still permissible between two pads of the mask layer.
 dBigRing - Big Pad Ring

String osChDir ()
Returns current directory

Returns:
null if the function failed, otherwise full path to the current directory.

String osChDir (String sDir)
Sets the current directory.

Parameters:

sDir The directory specification.

Returns:

null if the function failed, otherwise the full path to the new current directory.

```java
int osCopy ( String sSrcName, String sDstName )
```

Copies a file to another file.

Parameters:

sSrcName The specification of the file to copy.

sDstName The specification of the destination file.

Returns:

status 0 if copy is OK

```java
String osCreateTmpDir ( String sBasePath )
```

Function that creates tmp directory under given path and returns its name Warning: All temporary files and files placed into temporary directories created during a script are deleted at the end of the script run.

Parameters:

sBasePath the base path where the temporary directory will be created.

Returns:

null if the function failed; otherwise the full path to the new temporary directory.

Exceptions:

IOException

```java
String osCreateTmpDir ( )
```

Function creates tmp directory under system $TEMPP directory and returns its name Warning: All temporary files and files placed into temporary directories created during a script are deleted at the end of the script run.

Returns:

null if the function failed; otherwise the full path to the new temporary directory.

Exceptions:

IOException

```java
int osDelete ( String sFileName )
```

Delete specified file

Parameters:
ObjectList osFileInfo (String sPath)

Returns objectlist of the file information

Parameters:

sPath The full path of the file we need get the information

Returns:

objectlist with the file information

Example:

```java
list = osGetFileList("D:\\ucam\\ucam\\custom", true);
item = forEachItem(list) {
  fileInfo = osFileInfo(item);
  if (isFile(fileInfo)) {
    print("FILE: " + getFileName(fileInfo) + " (size " + getInputStreamSize(fileInfo) + "b)");
  } else if (isDirectory(fileInfo)) {
    print("DIRECTORY: " + getFileName(fileInfo));
  } print("at location " + getInputStream(fileInfo));
  if (canRead(fileInfo) && !canWrite(fileInfo)) {
    print("is READ-ONLY");
  } if (isHidden(fileInfo)) {
    print("is HIDDEN");
  } print("was last modified on " + getInputStreamLastModified(fileInfo));
}
```

Output:

```
FILE: Udualstrip.java (size 4808b)
at location D:\\ucam\\ucam\\custom\\impedance
is HIDDEN
was last modified on Thu Aug 11 12:39:19 CEST 2011
FILE: Uembstrip.java (size 3951b)
at location D:\\ucam\\ucam\\custom\\impedance
was last modified on Tue Nov 01 12:20:51 CET 2005
FILE: Urfmstrip.java (size 3993b)
at location D:\\ucam\\ucam\\custom\\impedance
was last modified on Tue Nov 01 12:20:51 CET 2005
FILE: Usymstrip.java (size 4036b)
at location D:\\ucam\\ucam\\custom\\impedance
is READ-ONLY
is HIDDEN
was last modified on Tue Nov 01 12:20:51 CET 2005
```

See also:

- `canRead(ObjectList)`
- `canWrite(ObjectList)`
- `getInputStreamLastModified(ObjectList)`
- `getFileName(ObjectList)`
- `getInputStreamParent(ObjectList)`
- `getInputStreamSize(ObjectList)`
ObjectList osGetFileList (String sDir,
 String sFileMask,
 boolean bRecurse,
 boolean bFullPath,
 boolean bWithDirs)

Enumerates directory and returns ObjectList of filenames (string)

Parameters:
 sDir The directory path
 sFileMask file mask filter supports WildCards (e.g. "*.vhs", "?_script.*")
 bRecurse if true the function goes to subdirectories as well
 bFullPath if true the function returns the list of the full paths
 bWithDirs if true the ObjectList contains also directories

Returns:
 Object List containing all file names in given directory and subdirectories if bRecurse is set to true and
 matching given sFileMask. The ObjectList includes the names of the directories if bWithDirs is set to true.

Exceptions:
 IOException If an I/O error occurs, which is possible because the construction of the file pathname list
 may require filesystem queries
<table>
<thead>
<tr>
<th>Function</th>
<th>Parameters</th>
<th>Returns</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ObjectList osGetFileList (String sDir, String sFileMask, boolean bRecurse)</code></td>
<td>Enumerates directory and returns ObjectList of filenames (string)</td>
<td>Object List containing all file and directory full paths in given directory and subdirectories if bRecurse is set to true and matching given sFileMask.</td>
<td><code>IOException</code> If an I/O error occurs, which is possible because the construction of the file pathname list may require filesystem queries</td>
</tr>
<tr>
<td><code>ObjectList osGetFileList (String sDir, String sFileMask)</code></td>
<td>Enumerates directory and returns ObjectList of filenames (string)</td>
<td>Object List containing all file and directory full paths in given directory matching the sFileMask. It is not recursive.</td>
<td><code>IOException</code> If an I/O error occurs, which is possible because the construction of the file pathname list may require filesystem queries</td>
</tr>
<tr>
<td><code>ObjectList osGetFileList (String sDir, boolean bRecurse)</code></td>
<td>Enumerates directory and returns ObjectList of filenames (string)</td>
<td>Object List containing all file names in given directory and subdirectories if bRecurse is set to true.</td>
<td><code>IOException</code> If an I/O error occurs, which is possible because the construction of the file pathname list may require filesystem queries</td>
</tr>
</tbody>
</table>
ObjectList osGetFileList (String \textit{sDir},
 boolean \textit{bRecurse},
 boolean \textit{bFullPath},
 boolean \textit{bWithDirs}
)

Enumerates directory and returns ObjectList of filenames (string)

Parameters:
\begin{itemize}
 \item \textit{sDir} The directory path
 \item \textit{bRecurse} if true the function goes to subdirectories as well
 \item \textit{bFullPath} if true the function returns the list of the full paths
 \item \textit{bWithDirs} if true the ObjectList contains also directories
\end{itemize}

Returns:
Object List containing all file names in given directory

Exceptions:
\textit{IOException} If an I/O error occurs, which is possible because the construction of the file pathname list may require filesystem queries

ObjectList osGetFileList (String \textit{sDir})

Enumerates directory and returns ObjectList of filenames (string)

Parameters:
\begin{itemize}
 \item \textit{sDir} The directory path
\end{itemize}

Returns:
Object List containing all file and directory full paths in given directory. It is not recursive.

Exceptions:
\textit{IOException} If an I/O error occurs, which is possible because the construction of the file pathname list may require filesystem queries

int osMarkAsTmp (String \textit{sName})

Mark file (or directory) as temporary. Each marked file/directory will be deleted on the end of script automatically!

Parameters:
\begin{itemize}
 \item \textit{sName} file/directory with the name is marked as temporary
\end{itemize}

Returns:
0 if file is successfully marked as temporary; otherwise returns 1

Exceptions:
\textit{EvalError}

int osMkDir (String \textit{sDirName})
Creates the directory named by the given pathname.

Parameters:
- `sDirName` Directory path that will be created

Returns:
- 0 if and only if the directory was created; 1 otherwise

```java
int osMove ( String sSrcName,
            String sDstName )
```

Renames/Moves a file.

Parameters:
- `sSrcName` The name of the file to rename.
- `sDstName` The new name for the file.

Returns:
- status 0 if rename/move is OK

```java
void osRmDir ( String sDirName )
```

Remove empty directory

Parameters:
- `sDirName` Directory name

```java
void osRmTree ( String sDirName )
```

Remove non-empty directory/subtree

Parameters:
- `sDirName` Directory name

```java
int osUnTgz ( String sTgzArchive,
              String sDstDir )
```

This function creates a subdirectory with the basename of the tgz-file and will gunzip and untar the given tgz-archive under this subdirectory.

Parameters:
- `sTgzArchive` TGZ archive
- `sDstDir` Destination directory

Returns:
- 0 if the given file is successfully decompressed or 1 if it failed
int osUnZip (String sZipArchive, String sDstDir)

Uncompress .zip file to defined destination directory

Parameters:
- `sZipArchive`: ZIP archive
- `sDstDir`: Destination directory

Returns:
0 if the given file is successfully decompressed or 1 if it failed

void outAtgFixture (String key, String sTool, String iRes, int iSession)

Converts all active layers of this job to the Atg Fixture format.

Parameters:
- `key`: - language anf, anfref, anf_a2000, anfref_a2000
- `sTool`: - tool file
- `iRes`: - resource file
- `iSession`: - session id

void output274x (String sRes)

Converts all active layers of this job to the Gerber 274x format.

Parameters:
- `sRes`: path to the resource file

void outputAft (String res)

Converts all active layers of this job to the AFT format.

Parameters:
- `res`: path to the resource file

void outputAoi (boolean bCadData, boolean bReference)

Generate AOI output

Parameters:
- `bCadData`: - generate Cad info (LP file)
void outputAtf ()

Converts all active layers of this job to the ATF format.

ObjectList outputAutoDrill (String sDrjFile)

Output AutoDrill

Parameters:
 sDrjFile AutoDrill configuration file path.

Returns:
 ObjectArray, with the names of the output file names.

void outputCFMEE (String outputPath,
 boolean reverse,
 double marginx,
 double marginy,
 boolean distort,
 double distortx,
 double distory,
 double resizex,
 double resizey,
 boolean deleteOutside)

Generate CFMEE

Parameters:
 outputPath the location where the gdsii output will be written
 reverse whether the image should be reversed
 marginx margin x when reversing the image
 marginy margin y when reversing the image
 distort anamorphic resize x value
 distortx anamorphic resize y value
 distory whether to delete objects outside the outline
 resizex anamorphic resize x value
 resizey anamorphic resize y value
 deleteOutside whether to delete objects outside the outline

void outputCli ()

Converts all active layers of this job to the CLI format.
void outputColorPDF (String sPdfFullPath)

Create a pdf file from given layer (active in plane 1 - red layer) Apertures will be coloring by attribute uColor

Parameters:

sPdfFullPath full path to new PDF file, include file name

void outputDp40 (double pt_x,
 double pt_y,
 boolean bPositive,
 boolean bMirrorx,
 boolean bMirrory,
 double dLaserPower,
 int iPolygonSpeed,
 int iPcbFormat,
 String unit
)

Parameters:

pt_x (X coordinate)
pt_y (Y coordinate)
bPositive
bMirrorx
bMirrory
dLaserPower
iPolygonSpeed
iPcbFormat
unit

void outputDp40 (Point pt,
 boolean bPositive,
 boolean bMirrorx,
 boolean bMirrory,
 double dLaserPower,
 int iPolygonSpeed,
 int iPcbFormat,
 String unit
)

Parameters:

pt
bPositive
bMirrorx
bMirrory
dLaserPower
iPolygonSpeed
iPcbFormat
unit
void outputDxf (String unit,
 int iConturize,
 int iKeepTXT,
 double dExpandArcs,
 int iCenterLine,
 int iAllInOne
)

Converts all active layers of this job to the DXF format.

Parameters:
 unit - units
 iConturize - contourize
 iKeepTXT - keep TXT
 dExpandArcs - expand arcs
 iCenterLine - center line
 iAllInOne - all in one

void outputDxfV6 (String unit)

Converts all active layers of this job to the DXF v6 format.

Parameters:
 unit - units

void outputEie (String sRes,
 ObjectList par
)

Converts all active layers of this job to the EIE format.

Parameters:
 sRes path to the resource file
 par array of parameters

void outputEtec (String sResistOuter,
 String sResistInner,
 double mediaX,
 double mediaY,
 int iAlignType,
 int iLevelType,
 int iCycles,
 String sDate,
 String sTime,
 boolean bAuto,
 double dScaleX,
 double dScaleY,
 double dScaleOriX,
)
Generates ETEC output

Parameters:
- \texttt{sResistOuter}
- \texttt{sResistInner}
- \texttt{mediaX}
- \texttt{mediaY}
- \texttt{iAlignType}
- \texttt{iLevelType}
- \texttt{iCycles}
- \texttt{sDate}
- \texttt{sTime}
- \texttt{bAuto}
- \texttt{dScaleX}
- \texttt{dScaleY}
- \texttt{dScaleOriX}
- \texttt{dScaleOriY}
- \texttt{sMDFfile}
- \texttt{sResource}

Converts all active layers of this job to many format types.

Parameters:
- \texttt{lan} - output language
- \texttt{too} - tool file
- \texttt{res} - resource file
- \texttt{resdb} - resource database
- \texttt{inc1} - part of Outpar.inc1
- \texttt{inc2} - part of Outpar.inc2
- \texttt{session} - part of Outpar.session
- \texttt{pre} - part of Outpar.pre
- \texttt{pos} - part of Outpar.pos
- \texttt{notUsed} - the parameter is not used at all must be set to \texttt{null}
void outputExt (String \textit{lan}, \\
String \textit{too}, \\
String \textit{res}, \\
ObjectList \textit{resdb}, \\
String \textit{inc1}, \\
String \textit{inc2}, \\
int \textit{session}, \\
Object[] \textit{pre}, \\
Object[] \textit{pos})

Converts all active layers of this job to many format types.

\textbf{Parameters:}

- \textit{lan} - output language
- \textit{too} - tool file
- \textit{res} - resource file
- \textit{resdb} - resource database
- \textit{inc1} - part of Outpar.inc1
- \textit{inc2} - part of Outpar.inc2
- \textit{session} - part of Outpar.session
- \textit{pre} - part of Outpar.pre
- \textit{pos} - part of Outpar.pos

void outputHimt (double \textit{datum}_x, \\
double \textit{datum}_y, \\
double \textit{offset}_x, \\
double \textit{offset}_y, \\
String \textit{mirror}, \\
String \textit{rotation})

Converts all active layers of this job to the HIMT format.

\textbf{Parameters:}

- \textit{datum}_x (X coordinate) - datum point
- \textit{datum}_y (Y coordinate) - datum point
- \textit{offset}_x (X coordinate) - offset point
- \textit{offset}_y (Y coordinate) - offset point
- \textit{mirror} - mirror
- \textit{rotation} - rotation

void outputHimt (Point \textit{datum}, \\
Point \textit{offset}, \\
String \textit{mirror}, \\
String \textit{rotation})

Converts all active layers of this job to the HIMT format.

\textbf{Parameters:}
void outputIpc2581 ()

Converts all active layers of this job to the IPC2581 format.

void outputIpcUfd (String key,
 String res,
 String version)

Converts all active layers of this job to the IPC350, IPC356, MET* and MNF* formats.

Parameters:
 key - language
 res - resource file
 version - Ucam version

void outputLpg (int iPpi,
 int iChoke,
 double offset_x,
 double offset_y)

Parameters:
 iPpi - resolution
 iChoke - choke
 offset_x (X coordinate)
 offset_y (Y coordinate)

int outputManiaSapphire (String sOutputPath,
 String sDescription,
String sGeometryfile,
boolean bStatistics,
boolean bDrill)

Generates Mania Sapphire output

Parameters:
 sOutputPath - output path
 sDescription - description
 sGeometryfile - geometry file
 bStatistics - statistic
 bDrill - drill

Returns:
 error status - 0 means OK

void outputMda (String sPath,
ObjectList par,
Object[] subpar,
int iApr,
int iSubfig,
int iRenum)

Converts all active layers of this job to the MDA format.

Parameters:
 sPath - path.
 par - G04 parameters for the main MDA file.
 subpar - G04 parameters for the sub MDA file.
 iApr - The aperture scale factor.
 iSubfig - Subfigures allowed when 1.
 iRenum - Renumber apertures when 1 (default 0).

void outputNec (String too)

Converts all active layers of this job to the NEC format.

Parameters:
 too - tools file

void outputOdbxx (String res)

Converts all active layers of this job to the ODB++ format.

Parameters:
 res - resource file
void outputOdbxxv7 (String res)
Converts all active layers of this job to the ODB++ v7 format.

Parameters:
res - resource file

void outputOif (String oifVersion,
 int byJob,
 int pan,
 int fillin)
Converts all active layers of this job to the OI2002 or OI5000 format.

Parameters:
oifVersion - language oi2002 or oi5000
byJob - value of "uout_oifbac_tog"
pan - value of "uout_oifpan_tog"
fillin - value of "uout_oif_fil"

boolean outputOrbot ()
Output Orbot - should be extended or canceled

Returns:
status

void outputPdf ()
Converts all active layers of this job to the PDF format.

void outputProbe (String sLang,
 int iSession,
 int iAccuracy)
Converts all active layers of this job to the flying probe formats probot and rislang.

Parameters:
sLang The language : "probot" or "rislang".
iSession The session number.
iAccuracy Accuracy for probot.

int outputRaid ()
Converts all active layers of this job to the RAID format.
Returns:
status

```java
void outputRpd ( int iPpi,
                double datum_x,
                double datum_y,
                double offset_x,
                double offset_y,
                String sMirror,
                String sRotation
)
```

Converts all active layers of this job to the RPD format.

Parameters:
- `iPpi`
- `datum_x` (X coordinate)
- `datum_y` (Y coordinate)
- `offset_x` (X coordinate)
- `offset_y` (Y coordinate)
- `sMirror`
- `sRotation`

```java
void outputRpd ( int iPpi,
                Point datum,
                Point offset,
                String sMirror,
                String sRotation
)
```

Converts all active layers of this job to the RPD format.

Parameters:
- `iPpi`
- `datum`
- `offset`
- `sMirror`
- `sRotation`

```java
boolean outputSchmid ( int resolution,
                      double maskRectangle_xmin,
                      double maskRectangle_ymin,
                      double maskRectangle_xmax,
                      double maskRectangle_ymax,
                      int maskRotation,
                      String maskMirror,
                      String maskPolarity,
                      int equipmentRotation,
)
```

VHS API Specification

March 2018

Page 285 of 393
Generates Schmid output (tiff and xml file) for all active layers of the current job.

Parameters:
- `resolution`: The resolution of the tiff file.
- `maskRectangle_xmin`: (left boundary of rectangle) Describes the enclosing rectangle of the tiff file.
- `maskRectangle_ymin`: (bottom boundary of rectangle) Describes the enclosing rectangle of the tiff file.
- `maskRectangle_xmax`: (right boundary of rectangle) Describes the enclosing rectangle of the tiff file.
- `maskRectangle_ymax`: (top boundary of rectangle) Describes the enclosing rectangle of the tiff file.
- `maskRotation`: The rotation of the tiff file (in degrees).
- `maskMirror`: The mirror setting of the tiff file ("", "X", "Y" or "XY").
- `maskPolarity`: The polarity of the tiff file ("P" or "N").
- `equipmentRotation`: The rotation of the tiff file on the inkjet equipment.
- `equipmentMirror`: The mirroring of the tiff file on the inkjet equipment.
- `offsetX`: The X offset of the tiff image on the inkjet equipment.
- `offsetY`: The Y offset of the tiff image on the inkjet equipment.
- `fiducials`: List of fiducial points (in CAD coordinates).
- `imagePath`: The directory where to store the image file.
- `configPath`: The directory where to store the xml file.
- `batchFile`: Specifies a postprocessing .bat file which should be run when the output is created. The specification can contain i to denote the image file and x to denote the xml file.

Returns:
- `output return value`

Generates Schmid output (tiff and xml file) for all active layers of the current job.

Parameters:
- `resolution`: The resolution of the tiff file.
maskRectangle | Describes the enclosing rectangle of the tiff file.
maskRotation | The rotation of the tiff file (in degrees).
maskMirror | The mirror setting of the tiff file ("", "X", "Y" or "XY").
maskPolarity | The polarity of the tiff file ("P" or "N").
equipmentRotation | The rotation of the tiff file on the inkjet equipment.
equipmentMirror | The mirroring of the tiff file on the inkjet equipment.
offsetX | The X offset of the tiff image on the inkjet equipment.
offsetY | The Y offset of the tiff image on the inkjet equipment.
fiducials | List of fiducial points (in CAD coordinates).
imagePath | The directory where to store the image file.
configPath | The directory where to store the xml file.
batchFile | Specifies a postprocessing .bat file which should be run when the output is created. The specification can contain i to denote the image file and x to denote the xml file.

Returns:
output return value

void outputSL13 (String sResources,
 String sKey)

Converts all active layers of this job to the SL3.7 or SL13.9 format.

Parameters:
sResources - resource file path
sKey - language

void outputSprint (String sOutputFolder,
 boolean bStandardMark,
 String sCopperName,
 String sRefName,
 String sAttributeZero,
 int iZeroPointNumber,
 String sAttributeCamera,
 int iCameraNumber,
 int iRotation0,
 int iRotation90,
 int iRotation180,
 int iRotation270,
 String sText1,
 String sText2,
 String sText3,
 String sCleanOption)

Generates Sprint output for the current job.

Parameters:
sOutputFolder | The output folder
bStandardMark |
void outputSys ()

Converts all active layers of this job to the Systronic format.

void outputTiff (String sPath,
 String sExt,
 String sOptions,
 int iResolution)

Makes a pixel file of the job/layer/aperture.

Parameters:
 sPath The path of the file.
 sExt The extension of the file.
 sOptions
 iResolution The output resolution in ppi.

int outputTs3 (boolean bDrilledBoards,
 double dSpace)

Parameters:
 bDrilledBoards True to output the drill layers too. False otherwise.
 dSpace The nominal space.

Returns:
 output return value

void outputWf2 (ObjectList par)

Converts all active layers of this job to the WF2 format.
void outputXdpf (String sPath)

Generates XDPF job

Parameters:
 sPath - destination path

void outputYsphotech (boolean imagecomp, String outputPath, String reverse, double marginx, double marginy, boolean mirrorg, boolean mirrory, double rotatex, double distortx, double distorty, double resize, boolean keepArrays, boolean deleteOutside, boolean autoDetected, String layername)

Generate ysphotech output on layer

Parameters:
 imagecomp the location where the gdsii output will be written
 outputPath Yes, No or False. Yes will reverse the image, No won't reverse the image. And False will prepare to reverse later: add $$ to the name and inverse the resize value
 reverse margin x when reversing the image
 marginx margin y when reversing the image
 marginy whether the image should be mirrored along the x-axis
 mirrorg whether the image should be mirrored along the y-axis
 mirrory rotation angle in degrees
 rotatex distort x value
 distortx distort y value
 distorty resize value
 resize whether to keep the array structure
 keepArrays whether to delete objects outside the outline
 deleteOutside whether or not alignment points are automatically detected or selected by the user
 autoDetected the name of the layer to be outputted, GDSII output will only happen when the layer is active
 layername
Generate yphotech output on all active layers

Parameters:

- **outputPath** the location where the gdsii output will be written
- **reverse** margin x when reversing the image
- **marginx** margin y when reversing the image
- **marginy** whether the image should be mirrored along the x-axis
- **mirrorx** whether the image should be mirrored along the y-axis
- **mirrory** rotation angle in degrees
- **rotate** distort x value
- **distortx** distort y value
- **distorty** whether to keep the array structure
- **keepArrays** whether to delete objects outside the outline
- **deleteOutside** whether or not alignment points are automatically detected or selected by the user
- **autoDetected** the name of the layer to be outputted, GDSII output will only happen when the layer is active
- **layername**

void pajPlaneAdjust (double dPlatedClearance,
double dUnplatedClearance,
double dRingSize,
double dRingClearance,
double dLineWidth,
double dCuClearance,
boolean bDoCut,
double dOutlineC Clearance)

Move word with given uText value over distance dx, dy, unless the distance is larger than limit and enforcelimit is true

Parameters:

- **dPlatedClearance**
- **dUnplatedClearance**
- **dRingSize**
- **dRingClearance**
- **dLineWidth**
- **dCuClearance**
- **bDoCut**
- **dOutlineC Clearance**
void pajPlaneAdjust (double dPlatedClearance,
 double dUnplatedClearance,
 double dRingSize,
 double dRingClearance,
 double dLineWidth,
 double dCuClearance,
 boolean bDoCut,
 double dOutlineClearance,
 boolean bOutputAsContour,
 boolean bSaveBackup,
 boolean bErrorPopups
)

Move word with given uText value over distance dx, dy, unless the distance is larger than limit and enforcelimit is true

Parameters:
- dPlatedClearance
- dUnplatedClearance
- dRingSize
- dRingClearance
- dLineWidth
- dCuClearance
- bDoCut
- dOutlineClearance
- bOutputAsContour
- bSaveBackup
- bErrorPopups

void pajPlaneAdjust (double dPlatedClearance,
 double dUnplatedClearance,
 double dRingSize,
 double dRingClearance,
 double dLineWidth,
 double dCuClearance,
 boolean bDoCut,
 double dOutlineClearance,
 boolean bOutputAsContour,
 boolean bSaveBackup
)

Move word with given uText value over distance dx, dy, unless the distance is larger than limit and enforcelimit is true

Parameters:
```c
void panelStepRepeat ( double pStart_x,
                     double pStart_y,
                     int iRepeatX,
                     int iRepeatY,
                     double dStepX,
                     double dStepY,
                     String sFlashPoint )
```

Step Repeat Panel

Parameters:

- `pStart_x` (X coordinate) Position of first flashPoint
- `pStart_y` (Y coordinate) Position of first flashPoint
- `iRepeatX` Number of repeats in x direction
- `iRepeatY` Number of repeats in y direction
- `dStepX` Step size in x direction
- `dStepY` Step size in y direction
- `sFlashPoint` Flashpoint "middle", "zero" or "center"

```c
void panelStepRepeat ( Point pStart, 
                      int iRepeatX,
                      int iRepeatY,
                      double dStepX,
                      double dStepY,
                      String sFlashPoint )
```

Step Repeat Panel

Parameters:

- `pStart` Position of first flashPoint
- `iRepeatX` Number of repeats in x direction
- `iRepeatY` Number of repeats in y direction
- `dStepX` Step size in x direction
- `dStepY` Step size in y direction
- `sFlashPoint` Flashpoint "middle", "zero" or "center"
void panelStepRepeatCenter (double pStart_x,
double pStart_y,
int iRepeatX,
int iRepeatY,
double dStepX,
double dStepY
)

Step Repeat Panel Flash point = Center

Parameters:
 pStart_x (X coordinate) Position of first flashPoint
 pStart_y (Y coordinate) Position of first flashPoint
 iRepeatX Number of repeats in x direction
 iRepeatY Number of repeats in y direction
 dStepX Step size in x direction
 dStepY Step size in y direction

void panelStepRepeatCenter (Point pStart,
int iRepeatX,
int iRepeatY,
double dStepX,
double dStepY
)

Step Repeat Panel Flash point = Center

Parameters:
 pStart Position of first flashPoint
 iRepeatX Number of repeats in x direction
 iRepeatY Number of repeats in y direction
 dStepX Step size in x direction
 dStepY Step size in y direction

void panelStepRepeatJobZero (double pStart_x,
double pStart_y,
int iRepeatX,
int iRepeatY,
double dStepX,
double dStepY
)

Step Repeat Panel Flash point = Job Zero

Parameters:
 pStart_x (X coordinate) Position of first flashPoint
 pStart_y (Y coordinate) Position of first flashPoint
 iRepeatX Number of repeats in x direction
 iRepeatY Number of repeats in y direction
 dStepX Step size in x direction
 dStepY Step size in y direction
void panelStepRepeatJobZero (Point pStart,
 int iRepeatX,
 int iRepeatY,
 double dStepX,
 double dStepY
)

Step Repeat Panel Flash point = Job Zero

Parameters:
 pStart Position of first flashPoint
 iRepeatX Number of repeats in x direction
 iRepeatY Number of repeats in y direction
 dStepX Step size in x direction
 dStepY Step size in y direction

void panelStepRepeatMiddle (double pStart_x,
 double pStart_y,
 int iRepeatX,
 int iRepeatY,
 double dStepX,
 double dStepY
)

Step Repeat Panel Flash point = Middle

Parameters:
 pStart_x (X coordinate) Position of first flashPoint
 pStart_y (Y coordinate) Position of first flashPoint
 iRepeatX Number of repeats in x direction
 iRepeatY Number of repeats in y direction
 dStepX Step size in x direction
 dStepY Step size in y direction

void panelStepRepeatMiddle (Point pStart,
 int iRepeatX,
 int iRepeatY,
 double dStepX,
 double dStepY
)

Step Repeat Panel Flash point = Middle

Parameters:
 pStart Position of first flashPoint
 iRepeatX Number of repeats in x direction
 iRepeatY Number of repeats in y direction
 dStepX Step size in x direction
int panelStepRepeatValidate ()

Checks, whether blocked jobs are valid for use with panel iterator. Some problems are solved automatically.

Returns:
- 0 if it is no stepRepeat job;
- 1: problems were found and solved;
- 2: if problems were found, but not (all) solved

void pasteFromClipboard ()

Paste all objects from clipboard onto all active layers.

String peGetInputFile ()

Gets the file used as input for the server mode.

Returns:
- The file used as input for the server mode.

boolean peGetInputJobBooleanProperty (String *name*)

Gets the value as a boolean of the property with the given name for the current Panel Editor input job.

Parameters:
- *name* : The name of the property

Returns:
- The corresponding value or true if the property is not defined.

double peGetInputJobDoubleProperty (String *name*)

Gets the value as a double of the property with the given name for the current Panel Editor input job.

Parameters:
- *name* : The name of the property

Returns:
- The corresponding value or 0.0 if the property is not defined or the current job is not set.

int peGetInputJobIntegerProperty (String *name*)

Gets the value as an int of the property with the given name for the current Panel Editor input job.

Parameters:
- *name* : The name of the property
Returns:
The corresponding value.

String peGetInputJobProperty (String name)

Gets the value as a String of the property with the given name for the current Panel Editor input job.

Parameters:
name * The name of the property

Returns:
The corresponding value or null if the property is not defined.

String peGetJobList ()

Gets the value as a boolean of the property with the given name for the current Panel Editor input job.

Returns:
The corresponding value or true if the property is not defined.

int peGetOptionalQuantity ()

Gets the optional quantity for the current Panel Editor input job.

Returns:
The optional quantity for the current Panel Editor input job.

boolean peGetPanelJobBooleanProperty (String name)

Gets the value as a boolean of the property with the given name for the current Panel Editor PanelJob.

Parameters:
name * The name of the property

Returns:
The corresponding value or true if the property is not defined.

double peGetPanelJobDoubleProperty (String name)

Gets the value as a double of the property with the given name for the current Panel Editor PanelJob.

Parameters:
name * The name of the property

Returns:
The corresponding value or 0.0 if the property is not defined or the current job is not set.

int peGetPanelJobIntegerProperty (String name)
Gets the value as an int of the property with the given name for the current Panel Editor PanelJob.

Parameters:

- *name* * The name of the property

Returns:
The corresponding value.

String peGetPanelJobProperty (String name)

Gets the value as a String of the property with the given name for the current Panel Editor PanelJob.

Parameters:

- *name* * The name of the property

Returns:
The corresponding value or null if the property is not defined.

int peGetPCBQuantity ()

Gets the number of PCBs of PanelEditor input job on the current Panel job.

Returns:
the number of PCBs of PanelEditor input job on the current Panel job.

boolean peGetSingleOptimization ()

Gets the optimization method for the server mode.

Returns:
True when single panels are generated.False when combinations are generated.

boolean peGetSolutionBooleanProperty (String name)

Gets the value as a boolean of the property with the given name for the current Panel Editor solution.

Parameters:

- *name* * The name of the property

Returns:
The corresponding value or true if the property is not defined.

double peGetSolutionDoubleProperty (String name)

Gets the value as a double of the property with the given name for the current Panel Editor solution.

Parameters:

- *name* * The name of the property

Returns:
int peGetSolutionIntegerProperty (String name)

Gets the value as an int of the property with the given name for the current Panel Editor solution.

Parameters:
 name * The name of the property

Returns:
 The corresponding value.

String peGetSolutionProperty (String name)

Gets the value as a String of the property with the given name for the current Panel Editor solution.

Parameters:
 name * The name of the property

Returns:
 The corresponding value or null if the property is not defined.

boolean peGetUseFrameSet ()

Gets the useframeset method for the server mode.

Returns:
 True when all frames from the set are used. False when only one frame is used.

void peSetInputFile (String fileName)

Sets the optional quantity for the current PanelEditor input job.

Parameters:
 fileName

void peSetInputJobProperty (String name, boolean value)

Sets the value of the property with the given name to the given value for the current Input Job.

Parameters:
 name * The name of the property
 value * The value to assign to the property
void peSetInputJobProperty (String name, int value)

Sets the value of the property with the given name to the given value for the current Input Job.

Parameters:
- name * The name of the property
- value * The value to assign to the property

void peSetInputJobProperty (String name, String value)

Sets the value of the property with the given name to the given value for the current Input Job.

Parameters:
- name * The name of the property
- value * The value to assign to the property

void peSetOptionalQuantity (int quantity)

Sets the optional quantity for the current PanelEditor input job.

Parameters:
- quantity The value to set.

void peSetPanelJobProperty (String name, boolean value)

Sets the value of the property with the given name to the given value for the current Panel Editor PanelJob.

Parameters:
- name * The name of the property
- value * The value to assign to the property

VHS API Specification March 2018 Page 299 of 393
Sets the value of the property with the given name to the given value for the current Panel Editor PanelJob.

Parameters:
- `name` * The name of the property
- `value` * The value to assign to the property

```java
void peSetPanelJobProperty ( String name,
                             int   value
)
```

Sets the value of the property with the given name to the given value for the current Panel Editor PanelJob.

Parameters:
- `name` * The name of the property
- `value` * The value to assign to the property

```java
void peSetPanelJobProperty ( String name,
                             String value
)
```

Sets the value of the property with the given name to the given value for the current Panel Editor PanelJob.

Parameters:
- `name` * The name of the property
- `value` * The value to assign to the property

```java
void peSetSingleOptimization ( boolean set )
```

Sets the optimization method for the server mode.

Parameters:
- `set` * When true, single panels are generated. When false, combinations are generated.

```java
void peSetSolutionProperty ( String name,
                             boolean value )
```

Sets the value of the property with the given name to the given value for the current Panel Editor solution.

Parameters:
- `name` * The name of the property
- `value` * The value to assign to the property

```java
void peSetSolutionProperty ( String name,
                             String value
)
```
Sets the value of the property with the given name to the given value for the current Panel Editor solution.

Parameters:

- `name` * The name of the property
- `value` * The value to assign to the property

void peSetSolutionProperty (String name, int value)

Sets the value of the property with the given name to the given value for the current Panel Editor solution.

Parameters:

- `name` * The name of the property
- `value` * The value to assign to the property

void peSetSolutionProperty (String name, String value)

Sets the value of the property with the given name to the given value for the current Panel Editor solution.

Parameters:

- `name` * The name of the property
- `value` * The value to assign to the property

void peSetUseFrameSet (boolean set)

Sets the frame set mode method for the server mode.

Parameters:

- `set` * When true, all frames from the set are used. When false, only one frame is used.

void pickAperture (double pt_x, double pt_y, double radius)

Aperture Manager: Pick an Aperture near the given point

Parameters:

- `pt_x` (X coordinate) The clicked point
- `pt_y` (Y coordinate) The clicked point
- `radius` Search radius around given point
void pickAperture (Point pt, double radius)

Aperture Manager: Pick an Aperture near the given point

Parameters:
pt The clicked point
radius Search radius around given point

Point pickPoint (String sLabel)

Wait for user pick point. It needs Ucam GUI. The function pauses script execution and waits for user interaction.

Parameters:
sLabel Label in information dialog

Returns:
Point picked by user

Exceptions:
AbortException after user abort

void plotAddLayerToMerge (String sJobName, String sPath)

Add layer to merge - to plot

Parameters:
sJobName name of job
sPath path to a dpf (layer) file, include ".dpf"

Exceptions:
AbortException

void plotAddLayerToMerge ()

Add layer in plane 1 to merge - to plot

boolean plotLayer (String sPath, int iFillPercentage, boolean bSeparator, boolean bClean)

Sent layer from the path to RIP
Parameters:
- `sPath` path to dpf (layer) file, include .dpf
- `iFillPercentage` is a percentage between 0% and 100%.
- `bSeparator` value true/false
- `bClean` If true, removes the successfully merged MergeJob instances.

Returns:
true if all is ok, false if was a problem

Exceptions:
AbortException

```java
boolean plotLayer ( int iFillPercentage,
                  boolean bSeparator,
                  boolean bClean
)
```

Sent layer in plane 1 to RIP

Parameters:
- `iFillPercentage` is a percentage between 0% and 100%.
- `bSeparator` value true/false
- `bClean` If true, removes the successfully merged MergeJob instances.

Returns:
true if all is ok, false if was a problem

Exceptions:
AbortException

```java
boolean plotMergedLayers ( int iFillPercentage,
                           boolean bSeparator,
                           boolean bClean
                          )
```

Send all prepare layers to RIP

Parameters:
- `iFillPercentage` is a percentage between 0% and 100%.
- `bSeparator` value true/false
- `bClean` If true, removes the successfully merged MergeJob instances.

Returns:
true if all is ok, false if was a problem

Exceptions:
AbortException

```java
void plotResetParams ( )
```

Set plot parameters to default
void plotSetAttribute (ObjectList oLayID,
 String sName,
 String sValue
)

Set plot layer attribute

Parameters:
 oLayID layer identification
 sName name of attribute
 sValue value of attribute

void plotSetAttribute (String sName,
 String sValue
)

Set plot layer attribute

Parameters:
 sName name of attribute
 sValue value of attribute

Exceptions:
 AbortException

void plotSetAttribute (String sName)

Set plot layer attribute

Parameters:
 sName name of attribute

Exceptions:
 AbortException

void plotSetParam (ObjectList oLayID,
 String sKey,
 String sName,
 double dValue
)

Set plot parameter to layer with the index

Parameters:
 oLayID layer identification
 sKey key of parameter
 sName name of parameter
 dValue value of parameter
void plotSetParam (String sKey,
String sName,
double dValue
)

Set plot parameter

Parameters:
 sKey key of parameter
 sName name of parameter
dValue value of parameter

Exceptions:
 AbortException

void plotSetParam (ObjectList oLayID,
String sKey,
boolean bValue
)

Set plot parameter to layer with the index

Parameters:
 oLayID layer identification
 sKey key name of parameter
 bValue value of parameter

void plotSetParam (String sKey,
boolean bValue
)

Set plot parameter

Parameters:
 sKey key name of parameter
 bValue value of parameter

Exceptions:
 AbortException

void plotSetParam (ObjectList oLayID,
String sKey,
int iValue
)

Set plot parameter to layer with the index

Parameters:
 oLayID layer identification
void plotSetParam (String sKey, int iValue)

Set plot parameter

Parameters:
- `sKey` key name of parameter
- `iValue` value of parameter

Exceptions:
- `AbortException`

void plotSetParam (ObjectList oLayID, String sKey, double dValue)

Set plot parameter to layer with the index

Parameters:
- `oLayID` layer identification
- `sKey` key name of parameter
- `dValue` value of parameter

void plotSetParam (String sKey, double dValue)

Set plot parameter

Parameters:
- `sKey` key name of parameter
- `dValue` value of parameter

Exceptions:
- `AbortException`

void plotSetParam (ObjectList oLayID, String sKey, String sValue)

Set plot parameter to layer with the index

Parameters:
- `oLayID` layer identification
- `sKey` key name of parameter
- `sValue` value of parameter
void plotSetParam (String sKey,
 String sValue
)

Set plot parameter

Parameters:
 sKey key name of parameter
 sValue value of parameter

Exceptions:
 AbortException

void plotSetRipHost (String sRIP)

set Rip Host name

Parameters:
 sRIP - Rip Host name

void plotStartNew ()

Initialization Set plot parameters to default values

Point Point (Point point)

Create copy of a point

Parameters:
 point original point

Returns:
 the point

Point Point (double x,
 double y,
 String units
)

Create point from two double ordinates

Parameters:
 x coordinate
 y coordinate
units Ucam units

Returns:
the point

Point Point (double x, double y)

Create point from two double coordinates

Parameters:
x coordinate
y coordinate

Returns:
the point

void point1 (double point1_x, double point1_y)

Sets the Point1 Used in Numbers Dialog

Parameters:
point1_x (X coordinate) the Point1
point1_y (Y coordinate) the Point1

void point1 (Point point1)

Sets the Point1 Used in Numbers Dialog

Parameters:
point1 the Point1

Point point1 ()

Gets the Point1 Used in Numbers Dialog

Returns:
Point1

void point1Active (boolean bActivate)

Sets the Point1 activity Used in Numbers Dialog

Parameters:
bActivate true if the Point1 should be active
boolean point1Active ()

Returns true if the Point1 is active Used in Numbers Dialog

Returns:
true if the Point1 is active

void point1X (double pt1X)

Sets the Point1 x coordinate Used in Numbers Dialog

Parameters:
pt1X the Point1 x coordinate

void point1Y (double pt1Y)

Sets the Point1 y coordinate Used in Numbers Dialog

Parameters:
pt1Y the Point1 y coordinate

void point2 (double point2_x, double point2_y)

Sets the Point2 Used in Numbers Dialog

Parameters:
point2_x (X coordinate) the Point2
point2_y (Y coordinate) the Point2

void point2 (Point point2)

Sets the Point2 Used in Numbers Dialog

Parameters:
point2 the Point2

Point point2 ()

Gets the Point2 Used in Numbers Dialog

Returns:
Point2
void point2Active (boolean `bActivate`)

Sets the Point2 activity Used in Numbers Dialog

Parameters:

- `bActivate` true if the Point2 should be active

boolean point2Active ()

Returns true if the Point2 is active Used in Numbers Dialog

Returns:

true if the Point2 is active

void point2X (double `pt2X`)

Sets the Point2 x coordinate Used in Numbers Dialog

Parameters:

- `pt2X` the Point2 x coordinate

void point2Y (double `pt2Y`)

Sets the Point2 y coordinate Used in Numbers Dialog

Parameters:

- `pt2Y` the Point2 y coordinate

void printListRefPoints (boolean `bOnAllActiveLay`)

Print list od reference points

Parameters:

- `bOnAllActiveLay` if true it work on all active layers other way only on active loaded layer in plane 1

void printListRefPoints ()

Print list od reference points on active loaded layer in plane 1

boolean promptBoolean (String `optName`, boolean `def`)

Show a checkbox field in prompt dialog

Parameters:

- `optName` String name, will be visible in prompt dialog as a label
```python
def boolean, default value
Note: if the parameter is variable, it must be defined globally for script.

Returns:
boolean a default value

double promptDouble ( String doubleName,
    double def
)

Show a double type field in prompt dialog

Parameters:

doubleName String name, will be visible in prompt dialog as a label

def double, default value
Note: if the parameter is variable, it must be defined globally for script.

Returns:
double a default value

void promptEnd ( )

Closes a prompt sequence and shows prompt dialog.

String promptFileName ( String strLabel,
    String def
)

Show a text field with browse button in prompt dialog

Parameters:

strLabel variable name, will be visible in prompt dialog as a label

def String, default value for file Name
Note: if the parameter is variable, it must be defined globally for script.

Returns:
fileName a default value

int promptInteger ( String intName,
    int def
)

Show an integer type field in prompt dialog

Parameters:

intName String name, will be visible in prompt dialog as a label

def int, default value
Note: if the parameter is variable, it must be defined globally for script.

Returns:
integer a default value
```
void promptLabel (String labelText)

Show label with given message

Parameters:
- *labelText* String label text

Note: if the parameter is variable, it must be defined globally for script.

Line promptLine (String lineName, double fromX, double fromY, double toX, double toY)

Show four unit fields to define **Line** from **Point** X and Y and to **Point** X and Y coordinates

Parameters:
- *lineName* String name, will be visible in prompt dialog as a label
- *fromX* default X coordinate of the from **Point**
- *fromY* default Y coordinate of the from **Point**
- *toX* default X coordinate of the to **Point**
- *toY* default Y coordinate of the to **Point**

Note: if the parameter is variable, it must be defined globally for script.

Returns:
- **Line** object

Line promptLine (String lineName, Line defLine)

Show four unit fields to define **Line** from **Point** X and Y and to **Point** X and Y coordinates

Parameters:
- *lineName* String name, will be visible in prompt dialog as a label
- *defLine* default **Line**

Note: if the parameter is variable, it must be defined globally for script.

Returns:
- **Line** object

String promptOption (String optName, ObjectList options, String def)

Show a combobox field in prompt dialog

Parameters:
- *optName* String name, will be visible in prompt dialog as a label
ObjectList with items shown in combobox

one of the string defined on options, default (selected) value

Note: if the parameter is variable, it must be defined globally for script.

Returns:
String a default text

Point promptPoint (String pointName, double ptX, double ptY)

Show two unit field to define Point coordinate X and Y

Parameters:
pointName String name, will be visible in prompt dialog as a label
ptX default X coordinate of the Point
ptY default Y coordinate of the Point

Note: if the parameter is variable, it must be defined globally for script.

Returns:
Point object

Point promptPoint (String pointName, Point point)

Show two unit field to define Point coordinate X and Y

Parameters:
pointName String name, will be visible in prompt dialog as a label
point default Point

Note: if the parameter is variable, it must be defined globally for script.

Returns:
Point object

Rectangle promptRectangle (String rectangleName, double xmin, double xmax, double ymin, double ymax)

Show four unit fields to define Rectangle X min, X max, Y min and Y max coordinates

Parameters:
rectangleName String name, will be visible in prompt dialog as a label
xmin default minimal rectangle X coordinate
xmax default maximal rectangle X coordinate
ymin default minimal rectangle Y coordinate
ymax default maximal rectangle Y coordinate

Note: if the parameter is variable, it must be
Returns: Rectangle object

Rectangle promptRectangle (String rectangleName,
 Rectangle rectangle
)

Show four unit fields to define Rectangle X min, X max, Y min and Y max coordinates

Parameters:
 rectangleName String name, will be visible in prompt dialog as a label
 rectangle default Rectangle Note: if the parameter is variable, it must be defined globally for script.

Returns: Rectangle object

void promptStart (String sSetName,
 String sTitle
)

Initiates prompt dialog for users input and sets the name of the variables set Must be the first command before a prompt commands sequence

Parameters:
 sSetName the name of the variable set. If it is null or is empty it is ignored.
 sTitle the PromptDialog title. If it is null or is empty it is ignored Note: if the parameter is variable, it must be defined globally for script.

void promptStart (String sSetName)

Initiates prompt dialog for users input and sets the name of the variables set Must be the first command before a prompt commands sequence

Parameters:
 sSetName the name of the variable set. If it is null or is empty it has the same meaning as promptStart(). Note: if the parameter is variable, it must be defined globally for script.

void promptStart ()

Initiates prompt dialog for users input Must be the first command before a prompt commands sequence

String promptString (String strName,
 String def
)
Show a text field in prompt dialog

Parameters:
- **strName** String name, will be visible in prompt dialog as a label
- **def** String, default value **Note:** if the parameter is variable, it must be defined globally for script.

Returns:
- String a default value

```java
double promptUnit ( String unitName,
                   double def,
                   String units )
```

Show an unit field in prompt dialog

Parameters:
- **unitName** String name, will be visible in prompt dialog as a label
- **def** double, default value
- **units** "mm", "mil" or "inch" to determine units of the default value **Note:** if the parameter is variable, it must be defined globally for script.

Returns:
- a double value in current units

```java
void qmerge ( String sOptions )
```

qmerge description

Parameters:
- **sOptions** qmerge options

```java
void quitBlockEdit ( boolean bSave,
                    boolean bKeepLink )
```

Aperture Manager: Quits the Block Definition Edit Mode

Parameters:
- **bSave** true: save changes; false: discard changes
- **bKeepLink** true: keeps block links

```java
void quitBlockEdit ( boolean bSave )
```

Aperture Manager: Quits the Block Definition Edit Mode. The saved (if bSave is true) block keeps link when Ucam.db key uiape_block_keeplink is set to 1

Parameters:
- **bSave** true: save changes; false: discard changes
void quitBlockMultiEdit (boolean bSave,
 boolean bKeepLink)

Aperture Manager: Quits the Block Definition Multi Edit Mode

Parameters:
 bSave true: save changes; false: discard changes
 bKeepLink true: keeps block links

void quitBlockMultiEdit (boolean bSave)

Aperture Manager: Quits the Block Definition Multi Edit Mode. The saved (if bSave is true) block keeps link when Ucam.db key uiape_block_keepLink is set to 1

See also:
 quitBlockEdit(boolean, boolean)

Parameters:
 bSave true: save changes; false: discard changes

void quitComplexEdit (boolean bSave)

Aperture Manager: Quits the Complex Definition Edit Mode

Parameters:
 bSave true: save changes; false: discard changes

void quitConfirm ()

Quit application after asking for confirmation.

void readAmli (String sPath)

read AMLI files

Parameters:
 sPath - path to the root directory

Exceptions:
 IOException

void recognizeContours (String sConName)

recognizeContours

Parameters:
sConName The name of the conversion file/contour.

Rectangle Rectangle (Rectangle \textit{rect})

Create copy of a rectangle

Parameters:

\textit{rect} original rectangle

Returns:

the rectangle

**Rectangle Rectangle (double \textit{xmin},
 double \textit{ymin},
 double \textit{xmax},
 double \textit{ymax},
 String \textit{units})**

Create rectangle from four coordinates

Parameters:

\textit{xmin} left boundary of rectangle
\textit{ymin} bottom boundary of rectangle
\textit{xmax} right boundary of rectangle
\textit{ymax} top boundary of rectangle
\textit{units} Ucam units

Returns:

the rectangle

**Rectangle Rectangle (double \textit{xmin},
 double \textit{ymin},
 double \textit{xmax},
 double \textit{ymax})**

Create rectangle from four coordinates

Parameters:

\textit{xmin} left boundary of rectangle
\textit{ymin} bottom boundary of rectangle
\textit{xmax} right boundary of rectangle
\textit{ymax} top boundary of rectangle

Returns:

the rectangle

Rectangle Rectangle (Point \textit{ptPoint1},
Create enclosing rectangle of two points

Parameters:
- `ptPoint1` first point
- `ptPoint2` second point

Returns:
- the rectangle

Redo an action

Does a 3 point transformation on a job/layer to correct distortion of scanned artwork. In the layer(s) point 1 to 6 must be defined and the registration places point 1 on 4, 2 on 5 and 3 on 6. All objects are moved with the average x and y movement of those points.

Performs automatic layer registration on the job. All active layers are registered on a reference layer. The layer in plane 3 is taken as a reference layer. The selected pads in the reference layer are taken as a reference for registration.

Snaps all (selected) objects to the grid specified. Works on selected objects.

Parameters:
- `GridStep_x` (X coordinate) The grid step
- `GridStep_y` (Y coordinate) The grid step
- `GridOri_x` (X coordinate) The grid origin
- `GridOri_y` (Y coordinate) The grid origin
- `dXRadius` Only objects within the specified distance in x direction are moved.
- `dYRadius` Only objects within the specified distance in y direction are moved.
Snaps all (selected) objects to the grid specified. Works on selected objects.

Parameters:
- GridStep: The grid step
- GridOri: The grid origin
- dXRadius: Only objects within the specified distance in x direction are moved.
- dYRadius: Only objects within the specified distance in y direction are moved.

Registers a job/layer on a reference layer. All pads that are not registered and all tracks are offset with the average offset of the pads. The layer in plane 2 is taken as a reference layer. Works on selected objects.

Parameters:
- dRadius: Maximum distance between pads. If the distance between a pad and a reference pad is bigger than the radius, the pad is not registered.
- bOnFlashPoint: If true register only on pad flashpoint (not the edges)

removes all aperture attributes on layer lay

removes all job attributes

removes all layer attributes on layer lay

Removes all net attributes with given name on job and given net

Parameters:
- iNetNumber: Net number
- sAttrName: Net attribute name
- sAttrValue: Net attribute value
void removeNetAttr (int iNetNumber,
 String sAttrName)

Removes all net attributes with given name on job and given net

Parameters:
 iNetNumber Net number
 sAttrName Net attribute name

void removeNetAttr (String sAttrName,
 String sNetName)

Removes all net attributes with given name and value on job

Parameters:
 sAttrName Net attribute name
 sNetName Net name

void removeNetAttr (String sAttrName)

Removes all net attributes with given name on job

Parameters:
 sAttrName Net attribute name

void removeObjAttr ()

removes all object attributes on layer lay

void removeObjectAttribute (String sAttrName,
 String sAttrValue)

removeObjectAttribute Sets the object attribute with the given name and value. Takes objects from active layers from current job by Ucam options. (e.g. all selected objects)

Parameters:
 sAttrName The object attribute name
 sAttrValue The object attribute value

void removeObjectAttribute (String sAttrName)
removeObjectAttribute remove the object attribute with the given name. Takes objects from active layers from current job by Ucam options. (e.g. all selected objects)

Parameters:

sAttrName The object attribute name

```java
void removeYsphotechPlotstamp ( int plotstampID )
```

removes the plotstamp with a certain id

Parameters:

plotstampID the ID of the plotstamp to be removed *

```java
void replaceApeByCurrent ( )
```

Replace selected objects on all active layers by current aperture

```java
void replaceApertures ( )
```

Aperture Manager: Replace apertures of selection on current layer by current aperture

```java
void replaceBitmapByContours ( )
```

replaceBitmapByContours

```java
void replaceDrawsWithArcs ( double tolerance )
```

Tries to replace chains of minimum 3 consecutive vectors by an arc within given tolerance. If the operation succeeds, all the vectors are deleted and a new arc is created. The start/end points of the vector chain become the start and end points of the new arc.

Parameters:

tolerance The tolerance is the maximum distance from the arc to any of the vectors being replaced.

```java
void replaceInnersByOuters ( )
```

Replace inner countours by outer contours

```java
void replaceZeroLengthDraws ( double dMaxLength, boolean bFunctional, boolean bNonFunctional )
```

Replace Zero Length Draws and Arcs with flashes
Parameters:

- dMaxLength: Maximum length of objects to be replaced
- bFunctional: Replace objects within functional copper if true
- bNonFunctional: Replace objects within non-functional copper if true

```java
void reproducePanel ( String report )
```
Panel reproduce

Parameters:

- report: Report file (.prf)

```java
void reset ( )
```
Reset all values in Numbers

```java
void resetCFMEE ( )
```
Resets CFMEE settings: removes all alignment points

```java
void resetCores ( int iTop, String sAttach )
```
Reset Cores between given Layers

Parameters:

- iTop: top Layer index
- sAttach: "top", "bottom", "none" or "both"

```java
void resetCores ( )
```
Reset All Cores

```java
void resetWorkspace ( )
```
resets current workspace layout.

```java
void resetYsphotech ( )
```
Resets Ysphotech settings: removes all alignment points and plotstamps
void restoreArcs (boolean \textit{bPreferFullArc})

Restore Arcs Repair Invalid Arcs

\textbf{Parameters:}
\begin{itemize}
 \item \textit{bPreferFullArc} The parameter influence image for arcs where it does not clear if they are full arcs or zero arcs. If the value is set to true they will be full arcs, other way they will be zero arcs.
\end{itemize}

void restoreContours (boolean \textit{bPreferFullArc})

Restore Contours Repair Contours and Complexes

\textbf{Parameters:}
\begin{itemize}
 \item \textit{bPreferFullArc} The parameter influence image for arcs where it does not clear if they are full arcs or zero arcs. If the value is set to true they will be full arcs, other way they will be zero arcs.
\end{itemize}

void returnVariables (ObjectList \textit{returnVariables})

Terminates called script and returns ObjectList of variables

\textbf{Parameters:}
\begin{itemize}
 \item \textit{returnVariables} ObjectList of the return variables
\end{itemize}

\textbf{Exceptions:}
\begin{itemize}
 \item \textit{AbortException} after user abort
\end{itemize}

\textbf{See also:}
\begin{itemize}
 \item \textit{runScriptWithReturn(String)}
\end{itemize}

void reverse ()

Reverse selected elements

void reverseLayer ()

Reverse the active layers

void reverseLayers ()

Reverse active layer(s)

void rotate (double \textit{angle},
 boolean \textit{bUseCenter},
 boolean \textit{bOnRefPoints})
Rotate selections around origin corresponds to: Transform Objects - Edit - Rot 90/Rot270/Rot angle

Parameters:

- **angle**
 Value of the angle (pos:ccw or neg:cw)
- **bUseCenter**
 If true, rotate is done around center
- **bOnRefPoints**
 If true, rotate is also applied to reference points

```java
void roundDraw ( double pt_x,
    double pt_y,
    double dis
)
```

Replace a draw by a rounded join

Parameters:

- **pt_x** (X coordinate)
 Point on draw
- **pt_y** (Y coordinate)
 Point on draw
- **dis**
 Radius of rounding (see fillet) enter 0 to make radius = length of draw / 2

```java
void roundDraw ( Point pt,
    double dis
)
```

Replace a draw by a rounded join

Parameters:

- **pt**
 Point on draw
- **dis**
 Radius of rounding (see fillet) enter 0 to make radius = length of draw / 2

```java
void routStatistics ( String doOption )
```

Create the rout report for the current job.

Parameters:

- **doOption**
 Either "all" or "sel".

```java
void routStatistics ( )
```

Create the rout report for the current job.

```java
void runDRC ( String sCfgFile,
    boolean bBuildNetlist,
    String sUseNetlist,
    boolean bSelErrors
)
```
Run Smart DRC check

Parameters:
- sCfgFile Configuration file
- bBuildNetlist Build Netlist (true, false)
- sUseNetlist Use Netlist ("none", "layer" or "job")
- bSelErrors Select errors

String runFile (String sScriptPath, ObjectList argv)

Run script from file(s). Uses variables according to argv parameter. If argv is null the call is the same as runFile(String sScript) and uses all variables defined in parent interpreter if exists if argv is null the call is the same as runFile(String sScript) and uses all variables defined in parent interpreter if exists if argv is empty [{}] the script is called completely without input variable if argv is eg. ["name", 1, true] the called script knows one ObjectList variable with the name "args". The items are accessible by the index. Eg. name = args[0]; and isAvailable = args[2];

Parameters:
- sScriptPath file name which is either full path, wildcard mask or just base name, in this case the file is searched in current directory or using
 - hyperscript.script.path
 - ucam.db key.
- argv ObjectList with input arguments [{arg1, arg2, ..., argn}] or null or empty ObjectList [{}]

Returns:
- String RUN_STATUS_OK if run is OK, otherwise returns message about issue encountered.

Exceptions:
- AbortException if any problem encountered during script call

See also:
- runFile(String)
- runFile(String)
String runScript (String \(sScript \),
ObjectList \(argv \))

Run (interpret) given text. Uses variables according to \(argv \) parameter. If \(argv \) is null the call is the same as
\(\text{runScript(String } sScript \text{)} \) and uses all variables defined in parent interpreter if exists if \(argv \) is null the call is the same as
\(\text{runScript(String } sScript \text{)} \) and uses all variables defined in parent interpreter if exists if \(argv \) is empty \([{}]\) the script is called completely without input variable if \(argv \) is eg. \(["name", 1, true] \) the called script knows one ObjectList variable with the name "args". The items are accessible by the index. Eg. name = \(\text{args}[0] \); and isAvailable = \(\text{args}[2] \);

Parameters:
\(sScript \) text of the script.
\(argv \) ObjectList with input arguments \([\text{arg1, arg2, ..., argn}]\) or null or empty ObjectList \([{}]\)

Returns:
String RUN_STATUS_OK if run is OK, otherwise returns message about issue encountered.

Exceptions:
AbortException if any problem encountered during script call

See also:
runScript(String)
runScript(String)

String runScript (String \(sScript \))

Run (interpret) given text Example:

```
promptStart();
script = promptString("String to execute", "saveJob();");
promptEnd;
runScript(script);
runScript(script);
```

Parameters:
\(sScript \) text of the script.

Returns:
String RUN_STATUS_OK if run is OK, otherwise returns message about issue encountered.

Exceptions:
AbortException if any problem encountered during script call

ObjectList runScriptWithReturn (String \(sScript \),
Object[] \(argv \))

Run (interpret) given text. Uses variables according to \(argv \) parameter. If \(argv \) is null the call is the same as
\(\text{runScriptWithReturn(String } sScript \text{)} \) and uses all variables defined in parent interpreter if exists if \(argv \) is null the call is the same as
\(\text{runScriptWithReturn(String } sScript \text{)} \) and uses all variables defined in parent interpreter if exists if \(argv \) is empty \([{}]\) the script is called completely without input variable if \(argv \) is eg. \(["name", 1, true] \) the called script knows one ObjectList variable with the name "args". The items are accessible by the index. Eg. name = \(\text{args}[0] \); and isAvailable = \(\text{args}[2] \);
Parameters:
 sScript text of the script.
 argv ObjectList with input arguments {{arg1, arg2, ..., argn}} or null or empty ObjectList []

Returns:
An ObjectList with returning values.

Exceptions:
 AbortException if any problem encountered during script call

ObjectList runScriptWithReturn (String sScript)

Run (interpretate) given text. Uses all variables defined in parent interpreter if exists.

Parameters:
 sScript text of the script.

Returns:
An ObjectList with returning values.

Exceptions:
 AbortException if any problem encountered during script call

void saveAmli (String sPath)

save AMLI files

Parameters:
 sPath - path to the root directory

void saveBuildup (String sSpec,
 String sCustomer,
 String sDrcPar,
 String sCoreRef,
 String sPrePregMat,
 String sCopperMat,
 String sJobFlow,
 String sTechCheck,
 String sAttrSet,
 String sDatumList,
 ObjectList layList)

Save Current job buildup

Parameters:
 sSpec The file specification for the buildup file.
 sCustomer the customer
 sDrcPar the drc parameter file specification
 sCoreRef uCoreMaterial attribute value
int saveJob ()

Save Current job

int saveJobAs (String fullPath, String sVersion)

Save Current job as...

Parameters:

 fullPath The full pathname for the current job The target directory must already exist
 sVersion version "3" or "6" or "9"

int saveJobAs (String fullPath)

Save Current job as...

Parameters:

 fullPath The full pathname for the current job The target directory must already exist

void saveJobAsV3 ()

Save Current job as version 3. A separate function is needed for the button, to handle the Licensed case well.

void saveJobAsV6 ()

Save Current job as version 6. A separate function is needed for the button, to handle the Licensed case well.

void saveJobAsV9 ()

Save Current job as version 9. A separate function is needed for the button, to handle the Licensed case well.

void saveLayer (String sClass, String sSubClass,
Save Layer As

Parameters:
- **sClass**: Layer class "layer", "drill" or "extra"
- **sSubClass**: Layer subclass eg. "outline", "mask", "silk", ...
- **iLayIndex**: Layer index in given class or in given subclass
- **sFullPath**: String new full path file name

void saveLayer (String *layName*,
 String *fullPath*)

Save Layer with name

Parameters:
- **layName**: Name of layer to be saved
- **fullPath**: The full pathname for the dpf layer. The target directory must already exist

void saveMessagesAs (String *sFilePath*)

Saves the Messages window content with the given file path

Parameters:
- **sFilePath**: The messages will be saved to the file with given path

void saveOrder ()

Saves the defined order after all modifications to the rout order have been made.

void saveSplitConfig (String *sConfigName*)

Save split configuration for the given name

Parameters:
- **sConfigName**: name of configuration

void saveUFD (String *sUFDName*)

Saves the contents of the current fault database to the file with the given specification.

Parameters:
- **sUFDName**: UFD file specification
void saveWorkspace ()

Save currently set workspace layout. NOTE: The same as menu command Workspaces > Save

void saveWorkspace (String sWorkspaceName)

Save workspace layout as file with a given name in XML format.

Parameters:
 sWorkspaceName

void saveWorkspaceAs (String sWorkspaceName)

Save currently set workspace layout as file with a given name. NOTE: The same as menu command Workspaces > Save as...

Parameters:
 sWorkspaceName

void scale (double dScaleValue, boolean bUseCenter)

Scale selections

Parameters:
 dScaleValue Scale factor (greater than 1 for up and less than 1 for down)
 bUseCenter If true, Scale is done around center

void scaleObjectOnAttribute (String sName, double dScaleFactor, double dMinClearance)

Scales all objects (flash, draw, arc, txt) that have attribute 'name'. Scale 'factor' defines margin between objects which may define together scale zone. All objects in zone are scaled with factor. The center is used as center of the enclosing rectangle of the objects in a zone.

Parameters:
 sName an attribute name.
 dScaleFactor a scale factor.
 dMinClearance a minimal clearance between characters that should be respected after enlarging the text.

void screendump ()

Makes a screendump of the selected area and gives you the ability to print it.
void secureEtchCompensation (double dPadSpread,
 double dSmdSpread,
 double dTrackSpread,
 double dAreaSpread,
 double dPadPadClearance,
 double dPadSmdClearance,
 double dPadTrackClearance,
 double dPadAreaClearance,
 double dSmdSmdClearance,
 double dSmdTrackClearance,
 double dSmdAreaClearance,
 double dTrackTrackClearance,
 double dTrackAreaClearance,
 double dAreaAreaClearance,
 String sContourMethod,
 boolean bProcessSameNetSpacing,
 boolean bBackupOriginalLayer,
 boolean bCheckMissingCopper,
 boolean bFastMode,
 int iShiftMode,
 double dMinCopper
)

Secure Etch Compensation

Parameters:

- **dPadSpread**
 The spread value to apply to circular pads

- **dSmdSpread**
 The spread value to apply to non circular pads

- **dTrackSpread**
 The spread value to apply to draws

- **dAreaSpread**
 The spread value to apply to areas

- **dPadPadClearance**
 The clearance to keep between circular pads

- **dPadSmdClearance**
 The clearance to keep between circular pads and non circular pads

- **dPadTrackClearance**
 The clearance to keep between circular pads and draws

- **dPadAreaClearance**
 The clearance to keep between circular pads and areas

- **dSmdSmdClearance**
 The clearance to keep between non circular pads

- **dSmdTrackClearance**
 The clearance to keep between non circular pads and draws

- **dSmdAreaClearance**
 The clearance to keep between non circular pads and areas

- **dTrackTrackClearance**
 The clearance to keep between draws

- **dTrackAreaClearance**
 The clearance to keep between draws and areas

- **dAreaAreaClearance**
 The clearance to keep between areas

- **sContourMethod**
 The contour compensation method ("spread", "stroke", or "circle")

- **bProcessSameNetSpacing**
 Whether to process spacing between objects of the same net as well

- **bBackupOriginalLayer**
 If true, make backups of the original layer(s)

- **bCheckMissingCopper**
 If true, report errors when original copper was removed

- **bFastMode**
 If true, skip slow "select embedded" step to make SEC faster but
 sometimes less correct

- **iShiftMode**
 Mode to shift clearances, 0: no shift, 1: shift to cut only areas, 2: like 1, but
 keep original copper of areas

- **dMinCopper**
 The minimum copper width to keep
void secureEtchCompensation (double dPadSpread, double dSmdSpread, double dTrackSpread, double dAreaSpread, double dPadPadClearance, double dPadSmdClearance, double dPadTrackClearance, double dPadAreaClearance, double dSmdSmdClearance, double dSmdAreaClearance, double dTrackTrackClearance, double dTrackAreaClearance, double dAreaAreaClearance, String sContourMethod, boolean bProcessSameNetSpacing, boolean bBackupOriginalLayer, boolean bCheckMissingCopper, boolean bFastMode, int iShiftMode)

Secure Etch Compensation

Parameters:
- **dPadSpread**: The spread value to apply to circular pads
- **dSmdSpread**: The spread value to apply to non circular pads
- **dTrackSpread**: The spread value to apply to draws
- **dAreaSpread**: The spread value to apply to areas
- **dPadPadClearance**: The clearance to keep between circular pads
- **dPadSmdClearance**: The clearance to keep between circular pads and non circular pads
- **dPadTrackClearance**: The clearance to keep between circular pads and draws
- **dPadAreaClearance**: The clearance to keep between circular pads and areas
- **dSmdSmdClearance**: The clearance to keep between non circular pads
- **dSmdTrackClearance**: The clearance to keep between non circular pads and draws
- **dSmdAreaClearance**: The clearance to keep between non circular pads and areas
- **dTrackTrackClearance**: The clearance to keep between draws
- **dTrackAreaClearance**: The clearance to keep between draws and areas
- **dAreaAreaClearance**: The clearance to keep between areas
- **sContourMethod**: The contour compensation method ("spread", "stroke", or "circle")
- **bProcessSameNetSpacing**: Whether to process spacing between objects of the same net as well
- **bBackupOriginalLayer**: If true, make backups of the original layer(s)
- **bCheckMissingCopper**: If true, report errors when original copper was removed
- **bFastMode**: If true, skip slow "select embedded" step to make SEC faster but sometimes less correct
- **iShiftMode**: Mode to shift clearances, 0: no shift, 1: shift to cut only areas, 2: like 1, but keep original copper of areas
Secure Etch Compensation

Parameters:
- dPadSpread: The spread value to apply to circular pads
- dSmdSpread: The spread value to apply to non-circular pads
- dTrackSpread: The spread value to apply to draws
- dAreaSpread: The spread value to apply to areas
- dPadPadClearance: The clearance to keep between circular pads
- dSmdSmdClearance: The clearance to keep between non-circular pads
- dPadTrackClearance: The clearance to keep between circular pads and draws
- dPadAreaClearance: The clearance to keep between circular pads and areas
- dSmdTrackClearance: The clearance to keep between non-circular pads and draws
- dSmdAreaClearance: The clearance to keep between non-circular pads and areas
- dTrackTrackClearance: The clearance to keep between draws
- dTrackAreaClearance: The clearance to keep between draws and areas
- dAreaAreaClearance: The clearance to keep between areas
- sContourMethod: The contour compensation method ("spread", "stroke", or "circle")
- bProcessSameNetSpacing: Whether to process spacing between objects of the same net as well
- bBackupOriginalLayer: If true, make backups of the original layer(s)
- bCheckMissingCopper: If true, report errors when original copper was removed
- bFastMode: If true, skip slow "select embedded" step to make SEC faster but sometimes less correct

void secureEtchCompensationUndo ()

Secure Etch Compensation Undo Undoes any previous SEC. Deletes the negative clearance apertures and shrinks any objects carrying the spread value in the attribute named by ucam.db key "ClearanceManager.spreadAttribute".

void selectAll ()
void selectAll (String selectMode)

Select or deselect all objects.

Parameters:
 selectMode Either + (select) or - (deselect)

void selectAllApertures ()

Aperture Manager: Select all Objects of all Apertures in Aperture list

void selectAllContours (String selectMode, String conMode)

Select all contours.

Parameters:
 selectMode Either + (select) or - (deselect)
 conMode Defines what should be selected. "i" for inner contours, "o" for outer contours and "r" for regions.

void selectAllContours (String selectMode, double xSize, double ySize, String conMode)

Select or deselect all contours.

Parameters:
 selectMode Either + (select) or - (deselect)
 xSize The maximum width (x size) for the contour enclosing box.
 ySize The maximum height (y size) for the contour enclosing box.
 conMode Defines what should be selected. "i" for inner contours, "o" for outer contours and "r" for regions.

void selectAmbiguousContours (String selectMode)

Select ambiguous contours.

Parameters:
 selectMode Either + (select) or - (deselect)
void selectAperture (ObjectList **\textit{apeIndexArray} **)

Aperture Manager: Select Objects of Apertures

Parameters:

\textit{apeIndexArray} Array of indexes of the apertures on the current layer

void selectAperture ()

Aperture Manager: Select Objects of current Aperture

**void selectAperturesBiggerThan (String **\textit{selectMode} ** ,
double **\textit{dx} ** ,
double **\textit{dy} **)**

Select apertures bigger than ...

Parameters:

\textit{selectMode} Either + (select) or - (deselect)
\textit{dx} X value of enclosing rectangle
\textit{dy} Y value of enclosing rectangle

**void selectAperturesSmallerThan (String **\textit{selectMode} ** ,
double **\textit{dx} ** ,
double **\textit{dy} **)**

Select apertures smaller or equal than ...

Parameters:

\textit{selectMode} Either + (select) or - (deselect)
\textit{dx} X value of enclosing rectangle
\textit{dy} Y value of enclosing rectangle

**void selectByApeAttributeNames (String **\textit{selectMode} ** ,
String[] **\textit{sName} **)**

Select or deselect all objects of the specified attribute names.

Parameters:

\textit{selectMode} Either + (select) or - (deselect)
\textit{sName}
```java
void selectByAttributeName ( String selectMode,
                            String sName
)

Deprecated:
Select or deselect all objects of the specified attribute name.

Parameters:
    selectMode Either + (select) or - (deselect)
    sName      - attribute name

void selectByAttributeValue ( String selectMode,
                              String sName,
                              String sValue
)

Deprecated:
Select or deselect all objects of the specified attribute value.

Parameters:
    selectMode Either + (select) or - (deselect)
    sName      - attribute name
    sValue     - attribute value

void selectByObjectType ( String selectMode,
                          String objectTypes
)

Deprecated:
Select or deselect all objects of the specified object type.

Parameters:
    selectMode Either + (select) or - (deselect)
    objectTypes Comma separated list of f (flash), d (draw), a (arc) or v (vector text)

void selectChained ( String selectMode,
                    double pt_x,
                    double pt_y
)

```
Select chained draws.

Parameters:

- `selectMode` Either + (select) or - (deselect)
- `pt_x` (X coordinate) start point
- `pt_y` (Y coordinate) start point

```java
void selectChained ( String selectMode,
    Point pt )
```

Select chained draws.

Parameters:

- `selectMode` Either + (select) or - (deselect)
- `pt` start point

```java
void selectChained ( String selectMode,
    double pt_x,
    double pt_y,  
    double dTolerance )
```

Select chained draws.

Parameters:

- `selectMode` Either + (select) or - (deselect)
- `pt_x` (X coordinate) start point
- `pt_y` (Y coordinate) start point
- `dTolerance` radius of click

```java
void selectChained ( String selectMode,
    Point pt,
    double dTolerance )
```

Select chained draws.

Parameters:

- `selectMode` Either + (select) or - (deselect)
- `pt` start point
- `dTolerance` radius of click

```java
void selectChainedObjects ( String selectMode,
    double pnt_x, 
    double pnt_y,  
    double pixelRadius, 
```

VHS API Specification

March 2018

Page 337 of 393
void selectChainedObjects (String selectMode, Point pnt, double pixelRadius, double dOffCenter, boolean bSameApe, boolean bSameOrientation)

Parameters:
- **selectMode**: Either "+" or "-" to define type of selection
- **pnt**: clicked point
- **pixelRadius**: radius around pnt, tolerance to find an object
- **dOffCenter**: Tolerance between end point of reference object and start point of the following object
- **bSameApe**: If true the chain may only consist of objects of the same aperture
- **bSameOrientation**: If true the object must have the same orientation as the reference

Select contour by click (De)selects a region in a job/layer. A region is a copper area defined by 1 outer contour and 1 or more inner contours. The region should enclose target point.

Parameters:
- **selectMode**: Either + (select) or - (deselect)
- **pt_x**: (X coordinate) The target point.
- **pt_y**: (Y coordinate) The target point.
- **conMode**: Defines what should be selected. "i" for inner contours, "o" for outer contours and "r" for regions.
Select contour by click (De)selects a region in a job/layer. A region is a copper area defined by 1 outer contour and 1 or more inner contours. The region should enclose target point.

Parameters:

- **selectMode**: Either + (select) or - (deselect)
- **pt**: The target point.
- **conMode**: Defines what should be selected. "i" for inner contours, "o" for outer contours and "r" for regions.

```java
void selectContoursInWindow ( String selectMode,
   double rect_xmin,
   double rect_ymin,
   double rect_xmax,
   double rect_ymax,
   String conMode
 )
```

Select contours inside selection window (De)selects all regions in a job/layer inside a rectangular area. A region is a copper area defined by 1 outer contour and 1 or more inner contours.

Parameters:

- **selectMode**: Either "+" (select) or "-" (deselect)
- **rect_xmin**: (left boundary of rectangle) The target rectangle.
- **rect_ymin**: (bottom boundary of rectangle) The target rectangle.
- **rect_xmax**: (right boundary of rectangle) The target rectangle.
- **rect_ymax**: (top boundary of rectangle) The target rectangle.
- **conMode**: Defines what should be selected. "i" for inner contours, "o" for outer contours and "r" for regions.

```java
void selectContoursInWindow ( String selectMode,
   Rectangle rect,
   String conMode
 )
```

Select contours inside selection window (De)selects all regions in a job/layer inside a rectangular area. A region is a copper area defined by 1 outer contour and 1 or more inner contours.

Parameters:

- **selectMode**: Either "+" (select) or "-" (deselect)
- **rect**: The target rectangle.
- **conMode**: Defines what should be selected. "i" for inner contours, "o" for outer contours and "r" for regions.

```java
void selectContoursWithThinRegion ( double dThin,
   String selectMode
 )
```
Select contours with thin region.

Parameters:
- $d\text{Thin}$ value in current units
- $selectMode$ Either + (select) or - (deselect)

```java
void selectCurrentAperture ( String selectMode )
```

Select all objects using current aperture.

Parameters:
- $selectMode$ Either + (select) or - (deselect)

```java
void selectCurrentApertureDefinition ( String selectMode )
```

Select all objects using current aperture definition and the current aperture number.

Parameters:
- $selectMode$ Either + (select) or - (deselect)

```java
void selectCurrentObject ( String selectMode )
```

Select current object.

Parameters:
- $selectMode$ Either + (select) or - (deselect)

```java
void selectDoubles ( String selectMode, double tolerance )
```

Select doubles. (De)selects all objects that are duplicated.

Parameters:
- $selectMode$ Either "+" or ".". Selects when "+", deselects when ".".
- $tolerance$ The tolerance on the aperture definition.

```java
void selectEmbedded ( String selectMode, double tolerance )
```

Select embedded. (De)selects all embedded objects.

Parameters:
- $selectMode$ Either "+" or ".". Selects when "+", deselects when ".".
- $tolerance$ Tolerance on aperture definition
void selectFlashesLongerThan (String selectMode, double rRefRatio)

Select/deselect flashes in the job which the long side is over dRefRatio times longer than the short side

Parameters:
 selectMode - the option "+" (select) or "-" (deselect)
 rRefRatio - the referent ratio

int selectHornablePads (String selectMode, String apertureShapes)

Add hornable pads (rec and/or box) to selection or remove them from selection. Shows an error to the user if some parameters where invalid

Parameters:
 selectMode - Either "+" (select) or "-" (deselect), default value is "+"
 apertureShapes - options are "rec" or "box" default value is "rec,box".

Returns:
 Number of (de)selected hornable pads

boolean selectInvalidArcs ()

Select Invalid Arcs

Returns:
 false

int selectInvalidArcs (String sSelectMode, double dDeviation, String sLimit)

Select/Deselect invalid arcs by parameters

Parameters:
 sSelectMode - "+" for select invalid arcs or "," deselect deselect arcs
 dDeviation - is difference from distance Center point to To point or Center point to From point
 sLimit - "+" for select invalid arcs with the deviation bigger than the value dDeviation "," for select invalid arcs with the deviation smaller than the value dDeviation

Returns:
 number of selected invalid arcs

void selectIsolatedFlashes (String selectMode)
Select/deselect isolated flashes

Parameters:

`selectMode` Either + (select) or - (deselect) objects

```java
void selectMesh ( String selectMode )
```

Select mesh.

Parameters:

`selectMode` Either + (select) or - (deselect)

```java
int selectNetByClick ( String selectMode,
                        double pt_x,
                        double pt_y
)
```

Select net by click on layer in plane 1 then 2 and then 3.

Parameters:

`selectMode` Either + (select) or - (deselect) objects

`pt_x` (X coordinate) clicked location

`pt_y` (Y coordinate) clicked location

Returns:

clicked net number at the point

```java
int selectNetByClick ( String selectMode,
                        Point pt
)
```

Select net by click on layer in plane 1 then 2 and then 3.

Parameters:

`selectMode` Either + (select) or - (deselect) objects

`pt` clicked location

Returns:

clicked net number at the point

```java
int selectNetByName ( String selectMode,
                       String sNetName
)
```

Select net by name in current job (active layers).

Parameters:

`selectMode` Either "+" (select) or "-" (deselect) objects

`sNetName` Net name
void selectNetByNumber (String selectMode,
 int net,
 boolean bSelectShaved,
 boolean bSelectBroken
)

Select net by number in current job (active layers).

Parameters:
 selectMode Either + (select) or - (deselect) objects
 net Net number
 bSelectShaved Specifies if shaved objects should be selected, or not.
 bSelectBroken Specifies if broken objects should be selected, or not.

void selectNetByNumber (String selectMode,
 int net
)

Select net by number in current job (active layers).

Parameters:
 selectMode Either + (select) or - (deselect) objects
 net Net number

void selectNetByTestpoints (String selectMode,
 int nbt
)

Select net by number of testpoints.

Parameters:
 selectMode Either + (select) or - (deselect) objects
 nbt number of testpoints

void selectNetsWithoutPads (String selectMode)

Select nets without pads.

Parameters:
 selectMode Either + (select) or - (deselect) objects

String selectNonFunctionalPads ()

selectNonFunctionalPads Selects the non functional pads in the current job.
void selectObjectAttribute (String sAttrName,
 String sAttrValue
)

Deprecated:
selectObjectAttribute Select objects with set attribute with the given name and value from current job.

Parameters:
 sAttrName The object attribute name
 sAttrValue The object attribute value

void selectObjectAttribute (String sAttrName)

Deprecated:
selectObjectAttribute Select objects with set attribute with the given name from current job.

Parameters:
 sAttrName The object attribute name

void selectObjectByAttribute (String sAttrName,
 String sAttrValue
)

selectObjectAttribute Select objects with set attribute with the given name and value from current job.

Parameters:
 sAttrName The object attribute name
 sAttrValue The object attribute value

void selectObjectByAttribute (String sAttrName)

selectObjectAttribute Select objects with set attribute with the given name from current job.

Parameters:
 sAttrName The object attribute name

void selectObjectByAttributeName (String selectMode,
 String sName
)

Select or deselect all objects of the specified attribute name.

Parameters:
 selectMode Either + (select) or - (deselect)
 sName - attribute name

void selectObjectByAttributeValue (String selectMode,
 String sAttrValue
)
```java
void selectObjectByShape ( String selectMode,
                        String apertureShapes )
```

Select or deselect all objects of the specified object type.

Parameters:
- `selectMode` Either + (select) or - (deselect)
- `apertureShapes` Comma separated list of cir, don, rec, squ, box, oct, com, the, con, tex, blo

```java
void selectObjectByType ( String selectMode,
                         String objectTypes )
```

Select or deselect all objects of the specified object type.

Parameters:
- `selectMode` Either + (select) or - (deselect)
- `objectTypes` Comma separated list of f (flash), d (draw), a (arc) or v (vector text)

```java
void selectOpenContours ( String selectMode )
```

Select open contours.

Parameters:
- `selectMode` Either + (select) or - (deselect)

```java
void selectOverlappingContours ( String selectMode )
```

Select overlapping contours.

Parameters:
- `selectMode` Either + (select) or - (deselect)

```java
void selectOverlaps ( String selectMode )
```

Select or deselect all objects of the specified attribute value.

Parameters:
- `selectMode` Either + (select) or - (deselect)
- `sName` - attribute name
- `sValue` - attribute value
Select overlapping objects.

Parameters:

\[selectMode \] Either + (select) or - (deselect)

void selectPainted (String selectMode)

Select painted objects. Painted objects are a collection of tracks that touch and/or overlap.

Parameters:

\[selectMode \] Either "+" or "-". Selects when "+", deselects when "-".

int selectPaintedAreas (boolean bUseLoops, boolean bExcludeChains)

Selects all painted data in a current layer. Painted data are a collection of tracks that are covered on one side by other tracks.

Parameters:

\[bUseLoops \] Use a loop with a number of iterations
\[bExcludeChains \] Exclude chains from the painted area

int selectPaintedAreas ()

Selects all painted data in a current layer. Painted data are a collection of tracks that are covered on one side by other tracks.

void selectPlotStamps (String selectMode)

Select or deselect all plot stamps.

Parameters:

\[selectMode \] Either + (select) or - (deselect)

void selectPolygon (boolean bInside, boolean bOutside, boolean bCrossing, String sShapes, String sObjects, String selectMode, ObjectList polygonPoints)

Select Polygon.

Parameters:
bInside if true, select objects inside the polygon
bOutside if true, select objects outside the polygon
bCrossing if true, select object crossing the polygon outline
sShapes Possible values are "cir", "rec", "squa", "box", "oct", "con", "com", "the", "blo" and "txt", "don", "und". Multiple shapes can be specified in a comma separated list. Specify null, or an empty string to select all shapes.

Example: "cir,box,com".

Parameters:

sObjects The object name to (de)select. Possible values are "f", "d", "a" and "v" for flash, draw, arc and vtext. Multiple objects can be specified. Specify null, or an empty string to select all objects.

Example: "da", or "d,a".

Parameters:

selectMode Either + (select) or - (deselect) objects
polygonPoints outline of selections

void selectReferenceLayer (String selectMode)

Select objects with flashpoint inside reference layer.

Parameters:

selectMode Either + (select) or - (deselect) objects

void selectReverse (String selectMode)

Select objects with reverse polarity.

Parameters:

selectMode Either + (select) or - (deselect) objects

void selectSmallContours (String selectMode, double xSize, double ySize, String conMode)

Select small contours. (De)selects contours which size is smaller than the given dimensions.

Parameters:

selectMode Either "+" or "+". Selects when "+", deselects when "+".
xSize The maximum width (x size) for the contour enclosing box.
ySize The maximum height (y size) for the contour enclosing box.
conMode Defines what should be selected. "i" for inner contours, "o" for outer contours and "r" for regions.

void selectSmallSurface (String selectMode, double surface)
Select small contour surfaces.

Parameters:

- `selectMode` Either + (select) or - (deselect)
- `surface` Surface in square unit
- `conMode` Region, Outer or Inner

```java
void selectSmallTracks ( String selectMode,
                        String lenMode,
                        String dstMode,
                        double maxLength
)```

Select small tracks.

Parameters:

- `selectMode` Either + (select) or - (deselect)
- `lenMode` "abs" for length or "rel" for ratio
- `dstMode` "ctc" for center to center, "oto" for outside to outside
- `maxLength` Maximum length

```java
void selectTouchingObjects (String selectMode,
 double pnt_x,
 double pnt_y,
 double pixelRadius
)```

Parameters:

- `selectMode` Either "+" or "-" to define type of selection
- `pnt_x` (X coordinate) clicked point
- `pnt_y` (Y coordinate) clicked point
- `pixelRadius` radius around pnt, tolerance to find an object

```java
void selectTouchingObjects ( String selectMode,
                             Point pnt,
                             double pixelRadius
)```

Parameters:

- `selectMode` Either "+" or "-" to define type of selection
- `pnt` clicked point
- `pixelRadius` radius around pnt, tolerance to find an object

```java
void selectWindow (String selectMode,
 double pixelRadius
)```
Select window using board coordinates (De)selects all data in a rectangular area.

Parameters:
- **selectMode** Either "+" or "-" to select, or deselect.
- **rect**
 - **xmin** (left boundary of rectangle) rectangular select area
 - **ymin** (bottom boundary of rectangle) rectangular select area
 - **xmax** (right boundary of rectangle) rectangular select area
 - **ymax** (top boundary of rectangle) rectangular select area
- **winopt** Add "i", "o", and/or "c" to select inside, outside, and/or crossing.

Example: "ic" select all object in rectangle and all crossing objects.

Parameters:
- **sShapes** The shape name to (de)select. Possible values are "cir", "rec", "squ", "box", "oct", "con", "com", "the", "blo", "txt", "don" and "und". Multiple shapes can be specified in a comma separated list. Specify null, or an empty string to select all shapes. Example: "cir,box,com".
- **sObjects** The object name to (de)select. Possible values are "f", "d", "a" and "v" for flash, draw, arc and vtext. Multiple objects can be specified. Specify null, or an empty string to select all objects.

Example: "da", or "d,a".
void selectZeroLengthDraws (double \textit{dMaxLength}, \\
 boolean \textit{bFunctional}, \\
 boolean \textit{bNonFunctional})

Select Zero Length Draws and Arcs

Parameters:
\begin{itemize}
 \item \textit{dMaxLength} Maximum length of objects to be selected
 \item \textit{bFunctional} Select objects within functional copper if true
 \item \textit{bNonFunctional} Select objects within non-functional copper if true
\end{itemize}

boolean setApe (int \textit{index})

Sets current aperture

Parameters:
\item \textit{index} - index of the aperture in the aperture list. Starts by 1 and index must be smaller or equal to aperture count in the aperture list. If the index is incorrect the current aperture is set to \textit{null}

Returns:
\item \textit{true} if the index is correct and current aperture is set, \textit{false} if the index is incorrect and current aperture is NOT set.

void setApertureAttribute (String \textit{sAttributeName}, \\
 String \textit{sAttributeValue})

Aperture Manager: Add or Modify an Attribute of current Aperture

Parameters:
\begin{itemize}
 \item \textit{sAttributeName} The new name of the Attribute
 \item \textit{sAttributeValue} The new value of the Attribute
\end{itemize}

void setAttributeOnObject (String \textit{attrName}, \\
 String \textit{attrValue})

Deprecated: This function is GUI ONLY, replaced by addObjectAttribute(sAttrName, sAttrValue)

See also:
\begin{itemize}
 \item \texttt{addObjectAttribute(String sAttrName, String sAttrValue)} Insert attribute on objects
\end{itemize}

Parameters:
\begin{itemize}
 \item \textit{attrName} Name of attribute
 \item \textit{attrValue} Value of attribute
\end{itemize}

boolean setCurrentAperture (int \textit{index})
Sets current aperture

Parameters:

\texttt{iIndex} Index of the aperture in the aperture list. Starts by 1 and index must be smaller or equal to aperture count in the aperture list. If the index is incorrect the current aperture is set to \texttt{null}.

Returns:

\texttt{true} if the index is correct and current aperture is set, \texttt{false} if the index is incorrect and current aperture is NOT set.

\begin{verbatim}
void setInPlane (int newPlane,
 int iIndex
)

Set layer in plane color.

Parameters:

newPlane Target plane color
iIndex Layer index in job build-up
\end{verbatim}

\begin{verbatim}
void setInPlane (int newPlane,
 String layName
)

Set layer in plane color.

Parameters:

newPlane Target plane color
layName Layer name
\end{verbatim}

\begin{verbatim}
void setInPlane (int newPlane,
 String layClass,
 String laySubclass,
 String attach,
 int index
)

Set layer in plane color and activate/deactivate according to plane action setup in function \texttt{VHS.setInPlane(...). setup in function} \texttt{VHS.setInPlane(...).}

Parameters:

newPlane Target plane color
layClass Layer class
laySubclass Layer subclass
attach Attachment top or bottom (only for extra layers)
index Index within the specified class or subclass e.g for a 6 layer job To set the bottom copper layer to plane 1:

\begin{verbatim}
setInPlane(1, "layer", null, ",", 6);
setInPlane(1, "layer", null, ",", 6);
\end{verbatim}

The value 6 refers to the 6th layer or
The value 2 refers to the second layer of subclass "outer". For layers of subclass "extra" the attach mode is also taken into account. To set a bottom mask with index 2 to plane 1:

```
setInPlane(1, "extra", "mask", "bottom", 2);
```

Any extra layer can be set to any plane by using its index within the extra layer class. All "extra" layers attached to "top" are numbered from top to bottom, for "extra" layers attached to "bottom" the numbering continues from bottom to top. To set the extra layer with index 4 to plane 1:

```
setInPlane(1, "extra", null, "", 4);
```

Index within the specified drill class or subclass Drill layers are numbered from left to right. To set the first plated drill layer of a job with 1 unplated and 2 plated layers to plane 1:

```
setInPlane(1, "drill", null, "", 2);
```

The value 2 refers to the second drill layer or

```
setInPlane(1, "drill", "plated", "", 1);
```

The value 1 refers to the first plated drill layer. **Note:** The `extra.order` ucam.db key can change the order of the extra layers. Scripts relying on the index of extra layers could fail to execute correctly on other systems.

```java
void setInPlane ( int newPlane, String layClass, String laySubclass, String attach, int index, boolean activate )
```

Set layer in plane color and activate/deactivate.

Parameters:

- `newPlane`: Target plane color
- `layClass`: Layer class
- `laySubclass`: Layer subclass
- `attach`: Attachment top or bottom (only for extra layers)
- `index`: Index within the specified class or subclass e.g for a 6 layer job To set the bottom copper layer to plane 1:

```
setInPlane(1, "layer", null, "", 6, true);
```

The value 6 refers to the 6th layer or

```
setInPlane(1, "layer", null, "", 6, true);
```

To set the bottom copper layer to plane 1:

```
setInPlane(1, "layer", "outer", "", 2, true);
```

The value 2 refers to the second layer of subclass "outer". For layers of subclass "extra" the attach mode is also taken into account. To set a bottom mask with index 2 to plane 2 and deactivate:

```
setInPlane(1, "extra", "mask", "bottom", 2);
```
Any extra layer can be set to any plane by using its index within the extra layer class. All "extra" layers attached to "top" are numbered from top to bottom, for "extra" layers attached to "bottom" the numbering continues from bottom to top. To set the extra layer with index 4 to plane 2 and activate:

```java
setInPlane(2, "extra", null, "", 4, true);
```

Index within the specified drill class or subclass Drill layers are numbered from left to right. To set the first plated drill layer of a job with 1 unplated and 2 plated layers to plane 3 and activate:

```java
setInPlane(3, "drill", "plated", "", 1, true);
```

The value 2 refers to the second drill layer or

```java
setInPlane (3, "drill", "plated", "", 1, true);
```

The value 1 refers to the first plated drill layer. Note: The extra.order ucam.db key can change the order of the extra layers. Scripts relying on the index of extra layers could fail to execute correctly on other systems.

Parameters:

- `newPlane` Target plane color
- `layerID` the layer ID given e.g. by `getLayerID()` function
- `activate` Activation of target plane

See also:

- `HSH_base::getLayerID(Ulayer)`
- `HSH_base::getLayerID(Ulayer, String)`

```java
void setInPlane ( int newPlane,
                 ObjectList layerID,
                 boolean activate )
```

Set layer in plane color and activate/deactivate.

Parameters:

- `newPlane` Target plane color
- `layerID` the layer ID given e.g. by `getLayerID()` function
- `activate` Activation of target plane

See also:

- `HSH_base::getLayerID(Ulayer)`
- `HSH_base::getLayerID(Ulayer, String)`

```java
void setInPlaneByName ( int newPlane,
                        String layName,
                        boolean activate )
```

Set layer in plane color and activate/deactivate.

Parameters:

- `newPlane` Target plane color
- `layName` Layer name
- `activate` Activation of target plane
void setLayerViewBottom (ObjectList *nameArray*)

Sets layer names to view in the dialog Job View in the part Bottom View

Parameters:

nameArray array of layer names

void setLayerViewDrill (ObjectList *nameArray*)

Sets layer names to view in the dialog Job View in the part Drill View

Parameters:

nameArray array of layer names

void setLayerViewMain (ObjectList *nameArray*)

Sets layer names to view in the dialog Job View in the part Main View

Parameters:

nameArray array of layer names

void setLayerViewTop (ObjectList *nameArray*)

Sets layer names to view in the dialog Job View in the part Top View

Parameters:

nameArray array of layer names

void setMode (ObjectList *oMode*)

Sets the current operation mode, units and snapmode

Parameters:

oMode - array of [sOption, sUnit, sSnapMode]

See also:

- setMode(String, String, String)
- setMode(String, String, String)

void setMode (String *sParams*)

Sets the current operation mode, units and snapmode parameter can contain all value combinations, they should be separated by comma or space

Parameters:

sParams - ("sel" or "all" or "selall") and/or ("mm" or "mil" or "inch") and/or ("no", "closest", "midpoint",...
void setMode (String sOption,
 String sUnit,
 String sSnapMode)

Sets the current operation mode, units and snapmode

Parameters:
 sOption - "sel" or "all" or "selall"
 sUnit - "mm" or "mil" or "inch"
 sSnapMode - snapmode : "no", "closest", "midpoint", "intersection", "closestline", "virtualintersection", "layerintersection", "grid"

Ulayer setNextLayerToPlane1 ()

Change layer in plane 1 by default rules (class and index).

Returns:
 new layer in plane 1

void setOrigin (double p_x,
 double p_y)

Set Origin using parameters

Parameters:
 p_x (X coordinate) point to set the origin
 p_y (Y coordinate) point to set the origin

void setOrigin (Point p)

Set Origin using parameters

Parameters:
 p point to set the origin

void setOrigin (double pt_x,
 double pt_y,
 boolean bOnRefPoints)

Set job origin for active layers using board coordinates

Parameters:
void setOrigin (Point pt,
 boolean bOnRefPoints)

Set job origin for active layers using board coordinates

Parameters:
 pt New DPF zero, relative to current DPF zero
 bOnRefPoints If true, move is also applied to reference points

void setOriginCenter (double p_x,
 double p_y,
 boolean useOutline)

Set Origin Center using parameters

Parameters:
 p_x (X coordinate) point to set the origin center
 p_y (Y coordinate) point to set the origin center
 useOutline use outline

void setOriginCenter (Point p,
 boolean useOutline)

Set Origin Center using parameters

Parameters:
 p point to set the origin center
 useOutline use outline

void setOriginToCenter (boolean bUseOutline,
 boolean bOnRefPoints)

Set job origin for active layers to center of job

Parameters:
 bUseOutline If true, center of outline layer is used
 bOnRefPoints If true, move is also applied to reference points
void setPlotParam (String sKey, int iValue)

Sets the plot parameter.

Parameters:
 sKey The key. Possible values are :

 - "RESOLUTION"
 - "XOFF" (the x offset)
 - "YOFF" (the y offset)
 - "XSCALE" (the x scale)
 - "YSCALE" (the y scale)
 - "SXCEN" (the x scale center)
 - "SYCEN" (the y scale center)
 - "MXCEN" (the x mirror center)
 - "MYCEN" (the y mirror center)
 - "POSITION":
 - MergeJob.PLOT_POSITION_COMBINE_FILL_PERCENTAGE
 - MergeJob.PLOT_POSITION_COMBINE
 - MergeJob.PLOT_POSITION_SINGLE
 - MergeJob.PLOT_POSITION_SINGLE_LEFT_FIXED
 - MergeJob.PLOT_POSITION_SINGLE_RIGHT_FIXED
 - "ENLARGE_VECTORS_MINIMUMSIZE"
 - "ENLARGE_VECTORS_AMOUNT"
 - "ENLARGE_FLASH_MINIMUMSIZE"
 - "ENLARGE_FLASH_AMOUNT"
 - "ENLARGE_CONDUCTOR_SIZE" (Adds a size. Use 0 to remove them all.)
 - "ENLARGE_CONDUCTOR_AMOUNT"
 - "ENLARGE_COMPLEX"
 - "APPLY_ENLARGE_TO" (The value must be one of Ulayer.PLOT_ENLARGE_*
 - "VARIABLE_TEXT_HEIGHT"
 - "VARIABLE_TEXT_DIRECTION" (The value must be one of Ulayer.PLOT_VARTEXT_DIRECTION_*)

 iValue The integer value.

void setPlotParam (String sKey, double dValue)

Sets the plot parameter.

Parameters:
 sKey The key. Possible values are :

 - "XOFF" (the x offset)
 - "YOFF" (the y offset)
 - "XSCALE" (the x scale)
 - "YSCALE" (the y scale)
 - "SXCEN" (the x scale center)
 - "SYCEN" (the y scale center)
 - "MXCEN" (the x mirror center)
 - "MYCEN" (the y mirror center)
 - "ENLARGE_VECTORS_MINIMUMSIZE"
 - "ENLARGE_VECTORS_AMOUNT"
 - "ENLARGE_FLASH_MINIMUMSIZE"
void setPlotParam (String sKey,
String sValue
)

Sets the plot parameter.

Parameters:

sKey The key. Possible values are:
- "POLARITY" ("POSITIVE" or "NEGATIVE")
- "EMULSION" ("DOWN" or "UP")
- "MIR" ("N", "X", "Y" or "XY")
- "ROT" ("Y", "N", "F")
- "FILM"
- "VARIABLE_TEXT"

sValue The String value.

void setResolution (int resolution)

Set resolution used by Ucam

Parameters:

resolution - resolution in number of internal units per mil

void setSnap (String sMode)

This method can only set a single snap mode.

Parameters:

sMode - snapmode : "no", "closest", "midpoint", "intersection", "closestline", "virtualintersection", "layerintersection", "grid"

void setSnapOnContour (boolean on)

turn on/off the snapping on contour

Parameters:

on true - turn on the snapping on contour, false - turn off the snapping on contour

void setUnit (String unit)

The double value.

"ENLARGE_FLASH_AMOUNT"
- "ENLARGE_CONDUCTOR_SIZE" (adds a size, or removes them all if size equals 0)
- "ENLARGE_CONDUCTOR_AMOUNT"
- "ENLARGE_COMPLEX"
- "VARIABLE_TEXT_HEIGHT"
Set Unit used by Ucam

Parameters:

unit - "mm" or "mil" or "inch"

```java
void setYsphotechAlignmentPointType ( int region,
           int point,
           String type )
```

set the type of the alignment point

Parameters:

- region the region number of the point (0 for global)
- point the alignment point number (1 to 4)
- type the type of the alignment point (can be "matrix" or "default")

```java
void setYsphotechPlotstamp ( int plotstampID,
           double rec_xmin,
           double rec_ymin,
           double rec_xmax,
           double rec_ymax,
           String type )
```

adds or changes the plotstamp with a certain id

Parameters:

- plotstampID the ID of the plotstamp. (should be unique)
- rec_xmin (left boundary of rectangle) the enclosing rectangle of the plotstamp
- rec_ymin (bottom boundary of rectangle) the enclosing rectangle of the plotstamp
- rec_xmax (right boundary of rectangle) the enclosing rectangle of the plotstamp
- rec_ymax (top boundary of rectangle) the enclosing rectangle of the plotstamp
- type the type of the plotstamp

```java
void setYsphotechPlotstamp ( int plotstampID,
           Rectangle rec,
           String type )
```

adds or changes the plotstamp with a certain id

Parameters:

- plotstampID the ID of the plotstamp. (should be unique)
- rec the enclosing rectangle of the plotstamp
- type the type of the plotstamp
void shavePads (double dPadTraClr, double dPadPadClr, int iClip, boolean bShavelInsideCom)

Shave Pads

Parameters:
- **dPadTraClr** - the pad to track clearance value. If the value is negative or zero then the clearance between pad and track is ignored.
- **dPadPadClr** - the pad to pad clearance value. If the value is negative or zero then the clearance between pads is ignored.
- **iClip** - If 1, objects are clipped. If 0, reverse objects are inserted.
- **bShavelInsideCom** true - shave COM regions between each other, false - shave only with foreign objects.

void shavePadsOnMaskLayer (double dPadToTrack, double dPadToPad)

Shave Soldermask layer

Parameters:
- **dPadToTrack** - Enter the pad to track clearance value. If the value is negative or zero then the clearance between pad and track is ignored.
- **dPadToPad** - Enter the pad to pad clearance value. If the value is negative or zero then the clearance between pads is ignored.

void showBlockStructure ()

show Block Structure Information dialog

void showMeasureValues (double p1_x, double p1_y,
double *dx,
double dy,
double clr,
double rng
}

Shows measure values in Numbers dialog if it is available otherwise the values are stored for future use.

Parameters:
- \texttt{p1_x} (X coordinate) Point1
- \texttt{p1_y} (Y coordinate) Point1
- \texttt{dx} the offset of the Point2 in X
- \texttt{dy} the offset of the Point2 in X
- \texttt{clr} clearance value
- \texttt{rng} ring value

```c
void showMeasureValues ( Point *p1,  
                        double dx,  
                        double dy,  
                        double clr,  
                        double rng
)
```

Shows measure values in Numbers dialog if it is available otherwise the values are stored for future use.

Parameters:
- \texttt{p1} Point1
- \texttt{dx} the offset of the Point2 in X
- \texttt{dy} the offset of the Point2 in X
- \texttt{clr} clearance value
- \texttt{rng} ring value

```c
void showNetlistProfile ( )
```

Displays the netlist profile in the terminal window.

```c
void silkOptimize ( int iReference,  
                   double dClearanceToReference,  
                   boolean bCompensateBumps,  
                   double dBumpClearance,  
                   int iMethod,  
                   double dMinimumDrawLength
)
```

Clips all active layers of the current job using the given parameters.

Parameters:
- \texttt{iReference} Defines the reference data used to perform the clipping against. Either \texttt{REFERENCE_PLANE2}, \texttt{REFERENCE_COPPER},
The clearance value to be added to the reference before clipping.

When true, the bumpClearance value is used to clip all data that touches copper which is covered by mask. Only applies when the reference is REFERENCE_COPPER_FREE_OF_MASK or REFERENCE_COPPER_PADS_FREE_OF_MASK

The clearance value to be added to clip data the touches copper which is covered by mask. Only applies when compensateBumps is true and bumpClearance is bigger than clearanceToReference.

Defines the clipping method. Either METHOD_EXACT, METHOD_REVERSE or METHOD_SPLIT_DRAWS.

The minimum length of draws that can remain after splitting draws. Only applies when the METHOD_SPLIT_DRAWS is specified.

int smoothen (String mode, double dMaxDeviation)

See also:
smoothen(Ulayer, String, double, int, boolean, int)
smoothen(Ulayer, String, double, int, boolean, int)

Parameters:
- **mode**
- **dMaxDeviation**

int smoothen (String mode, double dMaxDeviation, int iMinReplacePoints)

Smoothens contours in the currently active layer by approximating groups of draws and arcs by larger arcs or longer draws.

Parameters:
- **mode** Determines wheter we can use arcs, draws or both to smoothen a contour. Can be "arc" or "both", "line" is planned.
- **dMaxDeviation** Maximal allowed deviation between the original draw and its replacement
- **iMinReplacePoints** The minimal amount of points to consider for an approximation Default is 4 (which is equivalent to three tracks in default mode)

Returns:
- amount of contours that where smoothened or an error code if something went wrong

void spawn_func (String sCommand)

Spawn function in separate thread

Parameters:
Function `splitContour`.

Input is current aperture from active layer in plane 1. Output is contour or contours without inners. Overlap has to be smaller or equal than Min. Also clean all smaller inners according MinX or MinY.

Parameters:
- `dOverlapX` distance overlapping between new results contours in X coordinate, `iOverlapX <= iMinX`
- `dOverlapY` distance overlapping between new results contours in Y coordinate, `iOverlapY <= iMinY`
- `dMinX` all chains must be bigger than this
- `dMinY` all chains must be bigger than this

Returns:
Count of the split contours or 0 if no contours have to be split (no inners) or -1 if function failed

```cpp
int splitContour ( double dOverlapX,
                    double dOverlapY,
                    double dMinX,
                    double dMinY )
```

void splitContours ()

Split contours

boolean stackupByGerAttr ()

Change order of layers by Gerber X2 layer attributes

Returns:
true if OK, false if fault was detected

void standardizeBoxes ()

Standardize boxes on all active layers

void testVDPathfinder (int iStart, int iEnd)

Test default VDPathfinder between node iStart and iEnd

Parameters:
- `iStart`
- `iEnd`
void testVDPathfinder2 (double dStartX, double dStartY, double dEndX, double dEndY)

Test default VDPathfinder between coordinates given

Parameters:
 dStartX
 dStartY
 dEndX
 dEndY

void toggleApertureSelections ()

Aperture Manager: Toggle Selections in current layer

void toggleSelections ()

Toggle selections.

void toggleViewInBlocks ()

Toggle Show In Blocks

void toggleViewMode ()

Toggle View Mode Filled->Skeleton->Outline->Filled...

void toggleViewObjects ()

Toggle Show Objects

void toggleViewRefPoints ()

Toggle Show Reference Points

void toggleViewZero ()

Toggle Show DPF Zero
void trimDraws (double \texttt{p1_x}, double \texttt{p1_y}, double \texttt{p2_x}, double \texttt{p2_y})

Trim (connect) 2 virtually intersecting draws

Parameters:
\begin{itemize}
\item \texttt{p1_x} (X coordinate) \texttt{Point} on draw 1
\item \texttt{p1_y} (Y coordinate) \texttt{Point} on draw 1
\item \texttt{p2_x} (X coordinate) \texttt{Point} on draw 2
\item \texttt{p2_y} (Y coordinate) \texttt{Point} on draw 2
\end{itemize}

void trimDraws (\texttt{Point p1}, \texttt{Point p2})

Trim (connect) 2 virtually intersecting draws

Parameters:
\begin{itemize}
\item \texttt{p1} \texttt{Point} on draw 1
\item \texttt{p2} \texttt{Point} on draw 2
\end{itemize}

void undo ()

Undo an action

void undoClear ()

Clear undo history

void unload (String \texttt{sClass}, String \texttt{sSubClass}, int \texttt{iLayIndex}, boolean \texttt{bSave})

Unload Layer

Parameters:
\begin{itemize}
\item \texttt{sClass} Layer class "layer", "drill" or "extra"
\item \texttt{sSubClass} Layer subclass eg. "outline", "mask", "silk", ...
\item \texttt{iLayIndex} Layer index in given class or in given subclass
\item \texttt{bSave} true if the Layer should be saved before unloading
\end{itemize}
void updateProbes()
Update Probes

void updateTestPoints()
Update Test points

void updateTestPointsAndProbes()
Update Test points and probe information

void updateZPosition()
Recalculates the buildup Z-positions.

void utestCheck3DProbeClearance (boolean bCheck3DProbeClearance, double dClearance)
Sets parameter to dialog Utest
Parameters:
 bCheck3DProbeClearance check clearance
 dClearance value of clearance

void utestCreateEtmComponentLayers (boolean bCreateCompLay)
Sets parameter to dialog Utest for Create Component Layers
Parameters:
 bCreateCompLay sets to create the etm component layers

void utestDedicatedFixtures (boolean bDedicatedFixtures, boolean bFirstProbeNumber0, double dFontScale, int iShowProbeNumberEvery, boolean bShowConnectorNumberAlways, boolean bContinuousNumbering, boolean bContinuousNumberingOnBottom)
Sets parameters to dialog Utest and to subdialog Dedicated Fixtures
Parameters:
void utestDo ()
Generate all data for an electrical test machine

void utestFiducals (boolean bFiducals)
Sets parameters to dialog Utest

Parameters:
 bFiducals enable the dialog with settings

void utestFixtureSizeSplit (boolean bFixtureSizeSplit,
 int iSplitSet)
Sets parameters to dialog Utest and to subdialog Fixture Size Split

Parameters:
 bFixtureSizeSplit New layers sessions probe layers are added to the top and the bottom of the job.
 The new layers are of class EXTRA and subclass probe.
 iSplitSet

void utestGuidePlates (boolean bGuidePlates)
Sets parameter to dialog Utest

Parameters:
 bGuidePlates sets to generate the guideplate layers.

void utestKelvin4WireTest (boolean bKelvin4WireTest,
 boolean bUsedMidPoints,
 boolean bTestOn BlindHoles,
 boolean bTestOnlyThroughHoles,
 boolean bTestAllPads,
 double dMinDrillDia,
void utestKelvin4WireTest (boolean bKelvin4WireTest,
 boolean bUsedMidPoints,
 boolean bTestOnBlindHoles,
 boolean bTestOnlyThroughHoles,
 double dMinDrillDia,
 double dMaxDrillDia,
 int iSearchDepthLimit)

Sets parameters to dialog Utest and to subdialog Kelvin4WireTest

Parameters:

bKelvin4WireTest enable settings dialog
bUsedMidPoints Set true if will midpoints used
bTestOnBlindHoles Set true if will blind holes used
bTestOnlyThroughHoles Set true if will Through Holes used
bTestAllPads test all pads connected to an existing kelvin tested hole
dMinDrillDia min. drill diameter value
dMaxDrillDia max. drill diameter value
iSearchDepthLimit max. search depth value

void utestMachine (int iSession,
 String sMachName,
 String sAccessstype)

Sets values to dialog Utest to machine section

Parameters:

iSession number of session
sMachName name of machine
sAccessstype access type - side

void utestMicroAdjustment (boolean bMicroAdjustment,
 String sMicroAdjustmentType)

Sets parameters to dialog Utest and to subdialog Kelvin4WireTest
Sets parameters to dialog Utest and to subdialog Micro Adjustment

Parameters:

- `bMicroAdjustment`: enable Micro Adjustment Setup
- `iNbrOfTestPoints`: The following alignment point parameters are used for all selected test points.
- `dTestPointDiameter`: The aperture diameter of the pads used as alignment points (in the current unit).
- `dTestPointShiftEdge`: The distance between the test point and the first alignment point's center (in the current unit).
- `dTestPointShiftValue`: The distance between each of the alignment points' center on the axis of the shortest side (in the current unit).
- `dTestPointPitch`: The distance between each of the alignment points' center on the axis of the longest side (in the current unit).
- `dClearanceFactor`: The minimum clearance required between other copper areas and the edge of the test point (at the longest side).
- `dCenterDiameter`: The aperture diameter of the center point (in the current unit).

void `utestNetlist (boolean bNetlist, boolean bNetlistBuild, boolean bNetlistExpand)`

Sets parameters to dialog Utest to section Netlist

Parameters:

- `bNetlist`: if sets true, generate the netlist for the current job.
- `bNetlistBuild`: if sets true, generates or regenerates a netlist of the job.
- `bNetlistExpand`: if sets true, generates the netlist for a panelized job

void `utestOutput (boolean bOutput, boolean bDrillFixture, String sDrillFixture, boolean bNetlist, String sNetlist, boolean bElectTest, boolean bPinInserter, boolean bRepairAid, String sRepairAid)`

Sets parameters to dialog Utest and subdialog Output

Parameters:
bOutput enable dialog with settings

bDrillFixture enable drill fixture

sDrillFixture sets drill fixture machine

bNetlist Generates the Netlist Output files.

sNetlist Generates the electrical test files in IPC-D-356 format.

bElectTest Generates the Electrical Test files.

bPinInserter Generates the Output file for the pin inserter, currently only available for PL-2000, an ATG machine.

bRepairAid Generates the Repair Aid file for the repair machine.

sRepairAid sets to RAID or EPC or Circuitest

Exceptions:

AbortException

```java
void utestProbeAssignment ( boolean bProbeAssignment,
    boolean bStagger,
    String sStagpnt,
    boolean bStagopttrian,
    boolean bStagoptlined,
    double dPitch,
    double dTolerance,
    double dSetBack,
    boolean bReverse,
    boolean bAxis
)
```

Sets parameters to dialog Utest and to subdialog Probe Assignment

Parameters:

- **bProbeAssignment** New layers are added to the top and the bottom of the job. The new layers are of class EXTRA and subclass probe.
- **bStagger** Moves SMD test points in the test point layers so as to avoid probe clashes.
- **sStagpnt** This menu allows you to select 2-points, 3-points or 4-points staggering. Depending on your choice 2, 3 or 4 positions are used on the SMD for assigning the probe.
- **bStagopttrian** determine the pattern of the 3-points or 4-points stagger.
- **bStagoptlined** determine the pattern of the 3-points or 4-points stagger.
- **dPitch** Defines the maximum center to center distance between two SMD pads. If the SMD pitch between two SMD pads is smaller than the maximum pitch then these SMD pads are staggered.
- **dTolerance** Enter a value to define the tolerance for finding SMD rows and columns. If the distance between the SMD pads (=SMD pitch) varies more than the tolerance value, the SMD pads no longer belong to the same row or column (for staggering).
- **dSetBack** Moves the staggered probes over a defined distance back towards the flash point of the SMD. This causes a border of the defined distance at the SMD edge where no probes are assigned. The Setback value is the distance between the test pin and the edge of its corresponding pad.
- **bReverse** Uses the reverse orientation of all test points.
- **bAxis** Checks if through holes are present. This is useful when a test point needs to be moved from top to bottom or vice versa, enabling the test point to be swapped top to bottom or vice versa.

Exceptions:

AbortException
void utestProbeMapping (boolean \textit{bProbeMapping})

Sets parameter to dialog Utet

\textbf{Parameters:}

\textit{bProbeMapping} sets to map the test points to the grid of the electrical test machine.

void utestTestpoints (boolean \textit{bTestPoints},
 int \textit{iLoop},
 boolean \textit{bUseMasks},
 boolean \textit{bProbeSwaping},
 boolean \textit{bHandlePaintedPads},
 boolean \textit{bCircuitryCheck},
 boolean \textit{bFilterCopperAreas},
 boolean \textit{bViaOfSMDs},
 boolean \textit{bDrillsWithoutPad})

Sets parameters to dialog Utet to section Testpoints

\textbf{Parameters:}

\textit{bTestPoints} if true, calculate the test points of a job and to create one or two test point layers for the job.
\textit{iLoop} sets how to test pads in a loop
\textit{bUseMasks} if true, takes all solder mask layers into account for test point calculation.
\textit{bProbeSwaping} if true, marks all test points that can be technically tested on the other side of the pcb.
\textit{bHandlePaintedPads} if thue, handle painted pads
\textit{bCircuitryCheck} if true, enables the generation of test points according to electrical test Optimization Rules.
\textit{bFilterCopperAreas} if true, reduces the number of test points generated in large coppers by removing all unnecessary test points that are satisfactorily surrounded by copper.
\textit{bViaOfSMDs} if true, generates the test points only on the via holes of SMD's, according to the attribute settings for uVia.
\textit{bDrillsWithoutPad} if true, generates test points on drill holes without pad.

void utestTestpointsBOT (boolean \textit{bPointsBot1},
 boolean \textit{bPointsBot2},
 boolean \textit{bPointsBot3},
 boolean \textit{bPointsBot4},
 boolean \textit{bPointsBot5},
 boolean \textit{bPointsBot6},
 boolean \textit{bPointsBot7})

Sets parameters to dialog Utet to section Testpoints - Optimization Rule bottom side

\textbf{Parameters:}
bPointsBot1 Sets a test point on a pad that is a drilled pad and that is not connected with any track (on the top or bottom layer).
bPointsBot2 Sets a test point on a pad that is a drilled pad and that is connected with only one track on the test point side and not connected with any track on the opposite layer.
bPointsBot3 Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side and connected with only one track on the opposite layer.
bPointsBot4 Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side or the opposite layer, but is connected to one inner layer.
bPointsBot5 Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side and connected with more than one track on the opposite layer.
bPointsBot6 Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side or the opposite layer, but is connected to two or more inner layers.
bPointsBot7 Sets a test point on a pad that is not a drilled pad and that is connected with more than one track.

```java
void uTestTestpointsTOP ( boolean bPointsTop1,
        boolean bPointsTop2,
        boolean bPointsTop3,
        boolean bPointsTop4,
        boolean bPointsTop5,
        boolean bPointsTop6,
        boolean bPointsTop7 )
```

Sets parameters to dialog Utest to section Testpoints - Optimization Rule top side

Parameters:

- **bPointsTop1** Sets a test point on a pad that is a drilled pad and that is not connected with any track (on the top or bottom layer).
- **bPointsTop2** Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side and connected with only one track on the opposite layer.
- **bPointsTop3** Sets a test point on a pad that is a drilled pad and that is connected with only one track on the test point side and not connected with any track on the opposite layer.
- **bPointsTop4** Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side or the opposite layer, but is connected to one inner layer.
- **bPointsTop5** Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side and connected with more than one track on the opposite layer.
- **bPointsTop6** Sets a test point on a pad that is a drilled pad and that is not connected with any track on the test point side or the opposite layer, but is connected to two or more inner layers.
- **bPointsTop7** Sets a test point on a pad that is not a drilled pad and that is connected with more than one track.

```java
void validateInvalidArcs ( )
```

Validate Invalid Arcs

```java
void viewAmbiguous ( )
```

View ambiguous contours errors
void viewGrid (boolean bVisible,
 double ptOrigin_x,
 double ptOrigin_y,
 double dXStep,
 double dYStep,
 boolean bCross
)

View Grid show or hide the grid with given parameters

Parameters:

 bVisible true makes the grid visible; false hides the grid
 ptOrigin_x (X coordinate) the grid origin Point
 ptOrigin_y (Y coordinate) the grid origin Point
 dXStep the X distance distance between grid crosses or lines
 dYStep the Y distance distance between grid crosses or lines
 bCross true show the grid crosses; false show the grid lines

void viewGrid (boolean bVisible,
 Point ptOrigin,
 double dXStep,
 double dYStep,
 boolean bCross
)

View Grid show or hide the grid with given parameters

Parameters:

 bVisible true makes the grid visible; false hides the grid
 ptOrigin the grid origin Point
 dXStep the X distance distance between grid crosses or lines
 dYStep the Y distance distance between grid crosses or lines
 bCross true show the grid crosses; false show the grid lines

void viewGrid (boolean bVisible,
 Point ptOrigin,
 Point ptStep,
 boolean bCross
)

View Grid show or hide the grid with given parameters

Parameters:

 bVisible true makes the grid visible; false hides the grid
 ptOrigin the grid origin Point
 ptStep the Point with coordinates presenting the X and Y distance between grid crosses or lines
 bCross true show the grid crosses; false show the grid lines
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Parameters/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>void viewGrid (boolean bVisible)</td>
<td>View Grid show or hide the grid</td>
<td>Parameters: bVisible true makes the grid visible; false hides the grid</td>
</tr>
<tr>
<td>void viewGrid ()</td>
<td>View Grid makes the grid visible</td>
<td></td>
</tr>
<tr>
<td>void viewGuide ()</td>
<td>View guide</td>
<td></td>
</tr>
<tr>
<td>void viewHistory ()</td>
<td>View previous display (history)</td>
<td></td>
</tr>
<tr>
<td>void viewInBlocks (boolean trueFalse)</td>
<td>Set/Reset Show In Blocks toggle</td>
<td>Parameters: trueFalse Value of toggle</td>
</tr>
<tr>
<td>void viewMessages ()</td>
<td>View messages</td>
<td></td>
</tr>
<tr>
<td>void viewMode (String sMode)</td>
<td>View Mode</td>
<td>Parameters: sMode filled, skeleton or outline</td>
</tr>
<tr>
<td>void viewModeFilled ()</td>
<td>View Mode Filled</td>
<td></td>
</tr>
<tr>
<td>void viewModeOutline ()</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
void viewModeSkeleton ()

View Mode Skeleton

void viewNumbers ()

View numbers

void viewObjects (boolean trueFalse)

Set/Reset Show Objects toggle

Parameters:
 trueFalse Value of toggle

void viewPan (double p1_x,
 double p1_y,
 double p2_x,
 double p2_y
)

Pan main window using board coordinates

Parameters:
 p1_x (X coordinate) start point of pan offset
 p1_y (Y coordinate) start point of pan offset
 p2_x (X coordinate) end point of pan offset
 p2_y (Y coordinate) end point of pan offset

void viewPan (Point p1,
 Point p2
)

Pan main window using board coordinates

Parameters:
 p1 start point of pan offset
 p2 end point of pan offset

void viewRefPoints (boolean trueFalse)

Set/Reset Show Reference Points toggle
void viewRepaint ()

Repaint screen view

void viewWarning (String message)

View warning message

Parameters:
message Message text to be displayed

void viewZero (boolean trueFalse)

Set/Reset Show DPF Zero toggle

Parameters:
trueFalse Value of toggle

void viewZoom (String sZoom)

Zoom main window using predefined zoom levels

Parameters:
sZoom "total", "in2x", or "out2x"

void viewZoomIn ()

Zoom main window using In 2x zoom level

void viewZoomOut ()

Zoom main window using Out 2x zoom level

void viewZoomSelections ()

Zoom main window on selections

void viewZoomTotal ()
void viewZoomWindow ()

The command starts drag rubberband for definition of zoom window. If the window is defined the view is zoomed according to the window.

void viewZoomWindow (double rect_xmin,
 double rect_ymin,
 double rect_xmax,
 double rect_ymax,
 boolean bScreenCenter)

Zoom main window using board coordinates

Parameters:
- rect_xmin (left boundary of rectangle) zoom area
- rect_ymin (bottom boundary of rectangle) zoom area
- rect_xmax (right boundary of rectangle) zoom area
- rect_ymax (top boundary of rectangle) zoom area
- bScreenCenter - true means Screen Center, false means "Center" coordinates from the Numbers Dialog

void viewZoomWindow (Rectangle rect,
 boolean bScreenCenter)

Zoom main window using board coordinates

Parameters:
- rect zoom area
- bScreenCenter - true means Screen Center, false means "Center" coordinates from the Numbers Dialog

void viewZoomWindow (double rect_xmin,
 double rect_ymin,
 double rect_xmax,
 double rect_ymax)

Zoom main window using board coordinates

Parameters:
- rect_xmin (left boundary of rectangle) zoom area
- rect_ymin (bottom boundary of rectangle) zoom area
- rect_xmax (right boundary of rectangle) zoom area
- rect_ymax (top boundary of rectangle) zoom area
void viewZoomWindow (Rectangle rect)

Zoom main window using board coordinates

Parameters:

- `rect` zoom area

void xmlAdd (String sDataName, String sElementName, String sContent, ObjectList attrArray)

Adds simple element to the data section.

Parameters:

- `sDataName` A data section name
- `sElementName` Simple element name
- `sContent` A value (content) of the element
- `attrArray` Object List with pairs (attribute name, value) Eg. [[["name","name_1"],
["company","name_2"]]]

void xmlAdd (String sDataName, String sElementName, String sContent)

Adds simple element to the data section.

Parameters:

- `sDataName` A data section name
- `sElementName` Simple element name
- `sContent` A value (content) of the element

void xmlAdd (String sElementName, String sContent)

Adds Element to the root of the document. It is a simple element in XML document

Parameters:

- `sElementName` Simple element name
- `sContent` A value (content) of the element

void xmlAddData (String sParentDataName, String sDataName)
Add data section to the given parent data section

Parameters:

- `sParentDataName`: A parent data section name
- `sDataName`: A data section name to be added to the data section

```java
void xmlAddData ( String sDataName )
```

Adds data section to the root of the XML document

Parameters:

- `sDataName`: A data section name to be added to the XML document

```java
void xmlCreateData ( String sDataName )
```

Creates data section with a given name. Each section must be created first, otherwise it is not possible to add any data(elements) to it

Parameters:

- `sDataName`: New data section name

```java
void xmlDocument ( String rootName )
```

Creates new XML document with given root name

Parameters:

- `rootName`: A root element (section) name

```java
void xmlSave ( String sDestFilePath )
```

Saves current XML document. It is usually the last command in a script.

Parameters:

- `sDestFilePath`: destination full file path (with file name and extension) where the current XML file will be stored.

Exceptions:

- `FileNotFoundException`: When XML file couldn't be created
- `IOException`: When I/O issue turns up during the XML file output

```java
void YachiyoAOI_clearOutput ( String name )
```

Delete generated data for the given job This simply removes the whole "name" sub-folder from the output folder Ex: YachiyoAOI_clearOutput("job1"); Ex: YachiyoAOI_clearOutput("job1");

Parameters:

- `name`
(Re-)define area of a group The group (given by grpIndex) must already exist. Areas must be defined in increasing order (and each defined group shall finally have at least one area). Position specifies the final location of the area, i.e. where the rectangle defined in the corresponding group is placed If the area with the given areaIndex already exists, it is repositioned accordingly Ex: YachiyoAOI_defineArea(1, 1, Point(24.5, 14.1)); Ex: YachiyoAOI_defineArea(1, 1, Point(24.5, 14.1));

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>grpIndex</td>
<td>int</td>
<td>Group index</td>
</tr>
<tr>
<td>areaIndex</td>
<td>int</td>
<td>Area index</td>
</tr>
<tr>
<td>pos_x</td>
<td>double</td>
<td>X coordinate</td>
</tr>
<tr>
<td>pos_y</td>
<td>double</td>
<td>Y coordinate</td>
</tr>
</tbody>
</table>

(Re-)define area of a group The group (given by grpIndex) must already exist. Areas must be defined in increasing order (and each defined group shall finally have at least one area). Position specifies the final location of the area, i.e. where the rectangle defined in the corresponding group is placed If the area with the given areaIndex already exists, it is repositioned accordingly Ex: YachiyoAOI_defineArea(1, 1, Point(24.5, 14.1)); Ex: YachiyoAOI_defineArea(1, 1, Point(24.5, 14.1));

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>grpIndex</td>
<td>int</td>
<td>Group index</td>
</tr>
<tr>
<td>areaIndex</td>
<td>int</td>
<td>Area index</td>
</tr>
<tr>
<td>pos</td>
<td>Point</td>
<td>Rectangle</td>
</tr>
</tbody>
</table>

Start definition of a group The group will cover the provided area and allow masks of given types The types string encode both allowed types of masks (DRC, D2D, and/or CRF) and also their parameters (paraX) and optional integer value (used for passing values of additional toggles for D2D and CRF types) Group must be defined in increasing order, i.e. group 2 after group 1 etc. This call can be also used for re-definition of existing group, in that case the given group is re-set to newly provided parameters and all its masks and areas are deleted Ex: YachiyoAOI_defineGroup(1, Rectangle(0.0, 0.0, 115.5, 118.0), "DRC=para1,D2D=para2:1,CRF=para1:0"); Ex: YachiyoAOI_defineGroup(1, Rectangle(0.0, 0.0, 115.5, 118.0), "DRC=para1,D2D=para2:1,CRF=para1:0"); YachiyoAOI_defineGroup(2, Rectangle(0.0, 0.0, 10.3,
20.3), "D2D=para3:0,CRF=para2:1"); YachiyoAOI_defineGroup(2, Rectangle(0.0, 0.0, 10.3, 20.3), "D2D=para3:0,CRF=para2:1");

Parameters:

- `index`
- `area_xmin` (left boundary of rectangle)
- `area_ymin` (bottom boundary of rectangle)
- `area_xmax` (right boundary of rectangle)
- `area_ymax` (top boundary of rectangle)
- `types`

```c
void YachiyoAOI_defineGroup ( int index,
        Rectangle area,
        String types
    )
```

Start definition of a group The group will cover the provided area and allow masks of given types The types string encode both allowed types of masks (DRC, D2D, and/or CRF) and also their parameters (paraX) and optional integer value (used for passing values of additional toggles for D2D and CRF types) Group must be defined in increasing order, i.e. group 2 after group 1 etc. This call can be also used for re-definition of existing group, in that case the given group is re-set to newly provided parameters and all its masks and areas are deleted

Ex: YachiyoAOI_defineGroup(1, Rectangle(0.0, 0.0, 115.5, 118.0), "DRC=para1,D2D=para2:1,CRF=para1:0"); Ex: YachiyoAOI_defineGroup(1, Rectangle(0.0, 0.0, 115.5, 118.0), "DRC=para1,D2D=para2:1,CRF=para1:0"); YachiyoAOI_defineGroup(2, Rectangle(0.0, 0.0, 10.3, 20.3), "D2D=para3:0,CRF=para2:1"); YachiyoAOI_defineGroup(2, Rectangle(0.0, 0.0, 10.3, 20.3), "D2D=para3:0,CRF=para2:1");

Parameters:

- `index`
- `area`
- `types`

```c
void YachiyoAOI_defineMask ( int grpIndex,
        int maskIndex,
        double area_xmin,
        double area_ymin,
        double area_xmax,
        double area_ymax,
        String type
    )
```

(Re-)define mask of a group The group (given by grpIndex) must already exist. Masks must be defined in increasing order Rectangle of the mask must be inside rectangle of the specified group and also its type must be allowed by the group. Mask can have multiple types, their names are then concatenated by ‘+’ If the mask with the given maskIndex already exists, it is replaced according to the new definition

Ex: YachiyoAOI_defineMask(1, 3, Rectangle(36.54, 56.23, 43.21, 63.93), "CRF+DRC"); Ex: YachiyoAOI_defineMask(1, 3, Rectangle(36.54, 56.23, 43.21, 63.93), "CRF+DRC");

Parameters:

- `grpIndex`
- `maskIndex`
- `area_xmin` (left boundary of rectangle)
- `area_ymin` (bottom boundary of rectangle)
void YachiyoAOI_defineMask (int grpIndex, int maskIndex, Rectangle area, String type)

(Re-)define mask of a group. The group (given by grpIndex) must already exist. Masks must be defined in increasing order. The Rectangle of the mask must be inside rectangle of the specified group and also its type must be allowed by the group. Mask can have multiple types, their names are then concatenated by `+' If the mask with the given maskIndex already exists, it is replaced according to the new definition. Ex:
YachiyoAOI_defineMask(1, 3, Rectangle(36.54, 56.23, 43.21, 63.93), "CRF+DRC"); Ex:
YachiyoAOI_defineMask(1, 3, Rectangle(36.54, 56.23, 43.21, 63.93), "CRF+DRC");

Parameters:
- grpIndex
- maskIndex
- area
- type

boolean YachiyoAOI_generateCalibration (String name, double pos_x, double pos_y, double startRes, double endRes, double step, String options)

Generate set of images for calibration. The images will be generated into the folder OUTPUTFOLDER/name, centered at given pos and with sizes given by RESOLUTION_BMP_SIZE. The first image will have resolution startRes, the next one startRes + step, and so on until the resolution endRes is met. All resolutions are in um/px and they should be multiples of 10nm (i.e. 0.01), otherwise rounding is applied. For list of available options see YachiyoAOI_generateOutput() above. Ex: YachiyoAOI_generateCalibration("job1-calibration1", Point(11.65, 12.65), 1.5, 1.8, 0.01, ","); Ex: YachiyoAOI_generateCalibration("job1-calibration1", Point(11.65, 12.65), 1.5, 1.8, 0.01, ","); YachiyoAOI_generateCalibration("job1-calibration2", Point(11.65, 12.65), 1.0, 20.0, 1.0, "MIRRORX,MIRRORY,SCALEY=0.998,REV,RLE"); YachiyoAOI_generateCalibration("job1-calibration2", Point(11.65, 12.65), 1.0, 20.0, 1.0, "MIRRORX,MIRRORY,SCALEY=0.998,REV,RLE");

Parameters:
- name
- pos_x (X coordinate)
boolean YachiyoAOI_generateCalibration (String name,
 Point pos,
 double startRes,
 double endRes,
 double step,
 String options)

Generate set of images for calibration The images will be generated into the folder OUTPUTFOLDER/name, centered at given pos and with sizes given by RESOLUTION_BMP_SIZE. The first image will have resolution startRes, the next one startRes + step, and so on until the resolution endRes is met. All resolutions are in um/px and they should be multiples of 10nm (i.e. 0.01), otherwise rounding is applied. For list of available options see YachiyoAOI_generateOutput() above Ex: YachiyoAOI_generateCalibration("job1-calibration1", Point(11.65, 12.65), 1.5, 1.8, 0.01, ""); Ex: YachiyoAOI_generateCalibration("job1-calibration1", Point(11.65, 12.65), 1.0, 20.0, 1.0, "MIRRORX,MIRRORY,SCALEY=0.998,REV,RLE"); YachiyoAOI_generateCalibration("job1-calibration2", Point(11.65, 12.65), 1.0, 20.0, 1.0, "MIRRORX,MIRRORY,SCALEY=0.998,REV,RLE");

Parameters:
 name
 pos
 startRes
 endRes
 step
 options

boolean YachiyoAOI_generateOutput (String name,
 String lens,
 String fixture,
 String options)

Generate complete data (set of inf files and bitmaps) for AOI as specified by Yachiyo All data (i.e. yachiyo.inf file, cadrefpointX.bmp bitmaps for reference points and group-related data (yachiyo_rip.inf and many XXXXYYYY.raw tiles in sub-folders 1, 2, etc.)) are generated into the folder OUTPUTFOLDER/name based on provided lens and fixture parameters (strings choosing appropriate LENSx and FIXTUREx parameters from settings.ini) Available options (case sensitive, multiple options can be specified in any order, but they must be separated by comma and with no spaces): REV ... generate reverse output (i.e. copper as white and background as black) MIRRORX ... mirror the layer horizontally MIRRORY ... mirror the layer vertically SCALEX=float ... scale (distort) the layer in horizontal direction by the given factor (which should be near 1.0) SCALEY=float ... same for vertical direction BMP ... generate images as uncompressed 8-bit BMPs (https: RLE ... generate images as BMPs with RLE8 compression (https: RAW ... generate images in Yachiyo specific format (currently head-less stream of data with RLE8 encoding) PBM ... generate images as "ASCII" PBM (type P1, http: Ex: YachiyoAOI_generateOutput("job1", "x10.0", "9inch", ""); YachiyoAOI_generateOutput("job2", "x5.0", "5inch", "SCALEX=1.01,MIRRORY,REV,RLE"); YachiyoAOI_generateOutput("job2", "x5.0", "5inch", "SCALEX=1.01,MIRRORY,REV,RLE");
String YachiyoAOI_getStrings (String \textit{kind})

Return all possible values for the given GUI component (typically labels for items of comboboxes) The values are returned in one string, separated by "|" Kind must be one of the following strings: DRC, D2D, CRF, LENS, RESOLUTION, FIXTURE Ex: YachiyoAOI_getStrings("FIXTURE"); -> "5inch|9inch|13inch|125mm" Ex: YachiyoAOI_getStrings("FIXTURE"); -> "5inch|9inch|13inch|125mm"

Parameters:

\begin{itemize}
 \item \textit{kind}
\end{itemize}

boolean YachiyoAOI_init (String \textit{iniFile})

Initialize Yachiyo AOI, parse provided settings.ini Must be called first before any other YachiyoAOI command is used Ex: YachiyoAOI_init("H:/UcamBugs/Yachiyo/WORK/YAOI_params/settings.ini"); Ex: YachiyoAOI_init("H:/UcamBugs/Yachiyo/WORK/YAOI_params/settings.ini");

Parameters:

\begin{itemize}
 \item \textit{iniFile}
\end{itemize}

void YachiyoAOI_reset ()

Delete generated data for the given job This simply removes the whole "name" sub-folder from the output folder Ex: YachiyoAOI_clearOutput("job1");

void YachiyoAOI_setRefPoint (int \textit{index},
 double \textit{pos}_x,
 double \textit{pos}_y
)

Set reference point to given pos Points can be set in random order This call can be also used for re-position of any already defined point Ex: YachiyoAOI_setRefPoint(1, \textbf{Point}(563.35, 12.65)); Ex: YachiyoAOI_setRefPoint(1, \textbf{Point}(563.35, 12.65));

Parameters:

\begin{itemize}
 \item \textit{index}
 \item \textit{pos}_x (X coordinate)
 \item \textit{pos}_y (Y coordinate)
\end{itemize}

void YachiyoAOI_setRefPoint (int \textit{index},
 \textbf{Point} \textit{pos}
)

VHS API Specification

March 2018

Page 384 of 393
Set reference point to given pos Points can be set in random order This call can be also used for re-position of any already defined point Ex: YachiyoAOI_setRefPoint(1, \texttt{Point}(563.35, 12.65)); Ex: YachiyoAOI_setRefPoint(1, \texttt{Point}(563.35, 12.65));

Parameters:
- index
- pos

Variable Documentation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int \texttt{FILE_ATTRIBUTES} = 2</td>
<td>File info field containing file/dir attributes</td>
</tr>
<tr>
<td>int \texttt{FILE_MODIFICATION_DATE} = 4</td>
<td>File info field containing last modification time</td>
</tr>
<tr>
<td>int \texttt{FILE_NAME} = 5</td>
<td>File info field containing file/dir name</td>
</tr>
<tr>
<td>int \texttt{FILE_PARENT} = 1</td>
<td>File info field containing file/dir parent directory</td>
</tr>
<tr>
<td>int \texttt{FILE_SIZE} = 3</td>
<td>File info field containing file/dir size</td>
</tr>
<tr>
<td>int \texttt{FILE_TYPE} = 0</td>
<td>File info field containing type information</td>
</tr>
<tr>
<td>int \texttt{LAYER_ACTIVITY} = 5</td>
<td>Layer info field containing layer's activity</td>
</tr>
<tr>
<td>int \texttt{LAYER_APERTURES} = 6</td>
<td>Layer info field containing layer's activity</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>int LAYER_ATTACH = 3</td>
<td>Layer info field containing layer's attachment</td>
</tr>
<tr>
<td>int LAYER_CLASS = 1</td>
<td>Layer info field containing layer's class</td>
</tr>
<tr>
<td>int LAYER_INDEX = 4</td>
<td>Layer info field containing layer's index</td>
</tr>
<tr>
<td>int LAYER_NAME = 0</td>
<td>Layer info field containing layer's name</td>
</tr>
<tr>
<td>int LAYER_SUBCLASS = 2</td>
<td>Layer info field containing layer's subclass</td>
</tr>
</tbody>
</table>
Arc Class Reference

List of all members.

Public Attributes

- **Point cp**

 arc center point

- **Point fp**

 arc start point

- **String sense**

 arc sense

- **Point tp**

 arc end point

Detailed Description

arc representation

Member Data Documentation

Point Arc::cp

arc center point

Point Arc::fp

arc start point

String Arc::sense

arc sense

Point Arc::tp

arc end point
Public Attributes

- **Point fp**
 line start point

- **Point tp**
 line end point

Detailed Description

line representation

Member Data Documentation

<table>
<thead>
<tr>
<th>Member</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Line::fp</td>
<td>line start point</td>
</tr>
<tr>
<td>Point Line::tp</td>
<td>line end point</td>
</tr>
</tbody>
</table>
List of all members.

Public Attributes

- double x
 - x coordinate of the point
- double y
 - y coordinate of the point

Detailed Description

point representation

Member Data Documentation

```cpp
double Point::x
x coordinate of the point
```

```cpp
double Point::y
y coordinate of the point
```
List of all members.

Public Attributes

- double `xmax`

 right rectangle boundary

- double `xmin`

 left rectangle boundary

- double `ymax`

 top rectangle boundary

- double `ymin`

 bottom rectangle boundary

Detailed Description

rectangle representation

Member Data Documentation

- double `Rectangle::xmax`

 right rectangle boundary

- double `Rectangle::xmin`

 left rectangle boundary

- double `Rectangle::ymax`

 top rectangle boundary

- double `Rectangle::ymin`

 bottom rectangle boundary
Deprecated List

Member **compareNet**

use **compareNet**(boolean, boolean, boolean, boolean, boolean, boolean, boolean, boolean, double, boolean, double, String, boolean, boolean)

use **compareNet**(boolean, boolean, boolean, boolean, boolean, boolean, boolean, double, boolean, double, String, boolean, boolean)

Member **copperCount**

Copper count without mask layer usage

Parameters:

- `sOpt` Set to "job", "layer", or "inner"

Member **deselectObjectAttribute**

deselectObjectAttribute deselect objects with attribute with the given name and value from current job.

Parameters:

- `sAttrName` The object attribute name
- `sAttrValue` The object attribute value

Member **deselectObjectAttribute**

deselectObjectAttribute deselect objects with attribute with the given name from current job.

Parameters:

- `sAttrName` The object attribute name

Member **insertPolydrawRect**

Insert polydraw rectangle using current aperture

Parameters:

- `p1` bottom left point of the rectangle
- `p2` top right point of the rectangle
- `bRectCW` set true if the rectangle should be CW
- `bSel` set true if the rectangle should be selected

Member **selectByApertureShape**

Select or deselect all objects of the specified object type.

Parameters:

- `selectMode` Either + (select) or - (deselect)
- `apertureShapes` Comma separated list of cir, don, rec, squ, box, oct, com, the, con, tex, blo

Member **selectByAttributeName**

Select or deselect all objects of the specified attribute name.

Parameters:

- `selectMode` Either + (select) or - (deselect)
- `sName` attribute name

Member **selectByAttributeValue**

Select or deselect all objects of the specified attribute value.
Parameters:
 selectMode Either + (select) or - (deselect)
 sName - attribute name
 sValue - attribute value

Member **selectByObjectType**
Select or deselect all objects of the specified object type.

Parameters:
 selectMode Either + (select) or - (deselect)
 objectTypes Comma separated list of f (flash), d (draw), a (arc) or v (vector text)

Member **selectObjectAttribute**
selectObjectAttribute Select objects with set attribute with the given name and value from current job.

Parameters:
 sAttrName The object attribute name
 sAttrValue The object attribute value

Member **selectObjectAttribute**
selectObjectAttribute Select objects with set attribute with the given name from current job.

Parameters:
 sAttrName The object attribute name

Member **setAttributeOnObject**
This function is GUI ONLY, replaced by addObjectAttribute(sAttrName, sAttrValue)

See also:
 addObjectAttribute(String sAttrName, String sAttrValue) Insert attribute on objects

Parameters:
 attrName Name of attribute
 attrValue Value of attribute
Arc Member List

This is the complete list of members for Arc, including all inherited members.

<table>
<thead>
<tr>
<th>cp</th>
<th>Arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>fp</td>
<td>Arc</td>
</tr>
<tr>
<td>sense</td>
<td>Arc</td>
</tr>
<tr>
<td>tp</td>
<td>Arc</td>
</tr>
</tbody>
</table>