
 1

JAVA HYPERTOOL
Training Manual

February 2019

 2

Document:

Java HyperTool Training Manual rev.2.0
February 2019

Copyright:

2019 Ucamco NV, Gent Belgium

All rights reserved. This document may not be reproduced by any means, in whole or in part, without written
permission of the copyright owner.

This document supersedes all previous dated versions. The material in this document is subject to change
without notice.

No responsibility is assumed for any errors, which may appear in this document, neither for its use.

Trademarks:

All product names cites are trade names or registered trademarks of their respective owners.

For more information, contact:

Ucamco NV

Bijenstraat 19

B-9051 Gent

Belgium

 +32 9 216 99 00

 +32 9 216 99 12

Email: hypertool@ucamco.com

Web Site: http://www.ucamco.com

 3

Table of Contents

Table of Contents ... 3

Overview... 5

Chapter 1 – Getting Started ... 6

Overview... 6

Required Setup .. 7

Writing a basic Java program .. 8

Java Packages .. 10

Chapter 2 - Customizing UCAM .. 12

Overview... 12

Adding functionality to UCAM .. 13

Customizing the Menu .. 15

Adding items to a menu .. 17

Chapter 3 – Designing User Interfaces ... 19

Overview... 19

HyperTool User Interface APIs .. 20

Writing an attribute viewer .. 21

Chapter 4 – The HyperTool package .. 27

Overview... 27

Dtl$object ... 28

Ucamobj and subclasses .. 29

The Ucamapp class .. 30

Drawing layers ... 31

Write a layer viewer .. 32

Write a clearance measure utility .. 48

Chapter 5 – Custom Panels ... 58

Overview... 58

Contents

 4

Creating a Panel module ... 59

Write a Step and Repeat module .. 60

Extending PanelPlus .. 68

PanelPlus and its public hooks ... 69

Exercise: PrintPanel .. 73

Exercise: DrillCouponPanel ... 79

Chapter 6 – Standalone UCAM modules .. 85

Overview... 85

The UCAM setup method ... 86

Exercise: JobInfo ... 87

 5

Java HyperTool Training Manual

Overview

The following manual contains the material presented during the Java HyperTool
Training.

This book contains the following chapters.

Topic See Page

Getting Started 6

Customizing UCAM 12

Designing User Interfaces 19

Overview of the HyperTool Package 27

Custom Panels 58

Standalone UCAM modules 85

Introduction

Contents

 6

Chapter 1 – Getting Started

Overview

This chapter explains the required setup to follow the exercises and how to write a
basic Java program.

This chapter contains the following topics.

Topic See Page

Required Setup 7

Writing a basic Java program 8

Java Packages 10

Introduction

Contents

 7

Required Setup

The training requires UCAMX v2018 or higher being installed.

UCAM comes with a Java Runtime Environment. This does not allow compiling
Java code. The training requires Java Developers Kit 1.8 or higher being installed

Implementations can be downloaded from https://www.java.com.

Training attendees will receive:

 All the Java source code used during this training in the sources directory

 This manual in pdf format

 The Java HyperTool API specification in JavaDoc format : ‘API
reference/index.html’

A comprehensive tutorial on Java can be found at
https://docs.oracle.com/javase/tutorial/.

 When no distinction is made between Windows and Linux platforms, a forward
slash (/) will be used as directory separator. For Windows platforms replace it
with a backslash (\).

 The HOME directory is used to store custom UCAM files.

 For Linux: The HOME directory is defined in the .cshrc file and defaults to the
login directory of the current user.

 For Windows: By default, there is no HOME environment variable defined.
When UCAM does not find a HOME environment variable, it defaults to
%USERPROFILE%\ucam\home. For the purpose of the training, it is advised
to define the HOME variable as the directory where all custom files will be
stored.

 The ETSCAM_INSTALL directory is the directory where UCAM is installed.
On Linux systems, this environment variable is set in the .cshrc file during
installation. On Windows, this variable is set in the ucam_env.bat file. For the
purpose of the training, it is advisable to define this variable for the terminal
window used for Java compilation.

 The commands for compiling and running Java examples require that the bin
directory of the JDK installation is included in the PATH. If not, the full path for
javac and java should be given.

UCAM
installation

JDK

Documentation

Conventions

 8

Writing a basic Java program

Create a simple method that prints out “Hello World !” on the terminal window.

/*

 * HelloWorld.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

/**

 * Basic Java application. Prints out "Hello World !".

 */

public class HelloWorld {

 // Main method required to start up as a standalone application.

 // Calls the sayHello() method.

 public static void main(String[] args) {

 sayHello();

 }

 // Functional block for the application.

 // Prints out "Hello World !".

 public static void sayHello() {

 System.out.println("Hello World !");

 }

}

Store the file as sources/HelloWorld.java in the HOME directory.

From the HOME directory, run the Java compiler.

 For Linux :

javac –d $HOME sources/HelloWorld.java

 For Windows :

javac –d %HOME% sources\HelloWorld.java

A class HelloWorld.class is now created in the HOME directory.

Continued on next page

Task

The code

Compile the
code

 9

Writing a basic Java program, Continued

From the HOME directory start the Java virtual machine with the resulting class:

java HelloWorld

The output Hello World ! appears in the terminal window.

Run the
application

 10

Java Packages

Packages can be used to organize your classes into functional units. They
correspond to a directory structure the Java Virtual Machine uses to search
for classes.

As a general rule, one should start a package name with the reverse of the company
URL, in order to avoid name clashes with packages from other
companies/divisions.

EXAMPLE: package com.company.ucam.hello

The resulting class file can be found in com/company/ucam/hello.

Classes outside this package can use the given class using import statements.

EXAMPLE: import com.company.ucam.hello

The classpath setting defines where the Java compiler (javac) or the Java
Virtual Machine (java) should look for the class files.

Adapt the HelloWorld application to reside in the package
com.company.ucam.hello.

/*

 * HelloWorld.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Defines the package this class resides in.

// This should be the first line of code in the source file.

package com.company.ucam.hello;

/**

 * Basic Java application. Prints out "Hello World !".

 */

public class HelloWorld {

 // Main method required to start up as a standalone application.

 // Calls the sayHello() method.

 public static void main(String[] args) {

 sayHello();

 }

Continued on next page

Introduction

Task

The code

 11

Java Packages, Continued

 // Functional block for the application.

 // Prints out "Hello World !".

 public static void sayHello() {

 System.out.println("Hello World !");

 }

}

Store the file as sources/com/company/ucam/hello/HelloWorld.java in the HOME
directory.

From the HOME directory, run the Java compiler.

 For Linux:

javac –d $HOME
sources/com/company/ucam/hello/HelloWorld.java

 For Windows:

javac –d %HOME%
sources\com\company\ucam\hello\HelloWorld.java

A class com/company/ucam/hello/HelloWorld.class is now created in the HOME
directory.

From the HOME directory, start the Java virtual machine with the resulting class.

 For Linux:

java –classpath $HOME com.company.ucam.hello.HelloWorld

 For Windows :

java –classpath %HOME% com.company.ucam.hello.HelloWorld

The output Hello World ! appears in the terminal window.

The code
(continued)

Compile the
code

Run the
application

 12

Chapter 2 - Customizing UCAM

Overview

This chapter explains how to add functionality to the UCAM menu bars and
toolbars.

This chapter contains the following topics.

Topic See Page

Adding functionality to Ucam 13

Customizing the Menu 15

Adding extra functionality to Ucam buttons 17

Adding items to a menu 19

Introduction

Contents

 13

Adding functionality to UCAM

There are different ways to add custom programs to UCAM. The UCAM menu
and the toolbar can be configured using a resource file. New functionality can be
added using the UcamMenuActions and UcamActions classes.

One can create its own UcamMenuActions class with custom code included in a
static block.

The class is loaded before the menus and toolbars are built. This allows
defining functionality, which should be included in a menu and/or toolbar.

At startup, UCAM checks its classpath for a class named UcamMenuActions in
the default package (root package/no package defined). The order in which is
searched is:

 The user HOME directory

 The ETSCAM_CFG directory

 The ETSCAM_DAT directory

When a class is found, it is loaded, causing its static block to be executed.

Umnbutton and Umntbutton instances define the behaviour of a
Pushbutton/Togglebutton without the buttons itself being created. They serve as
the template for the buttons to be added to a menu and/or toolbar.

See the API documentation for the description of the classes.

The UCAM main menu can be customized using the resource file mainmenu.

UCAM looks for the file at the following locations:

 HOME\toolbars : user defaults

 ETSCAM_CFG\toolbars : site defaults

 UCAM defaults

The menubar property defines a list of all menus. Each menu(item) can further
define a list of menu items.

A separator is represented by a hyphen (-) and is only placed when there are menu
items before and after the separator.

A menu item is only created when an Umnbutton or Umntbutton instance with the
same name exists.

A menu item can have the following properties:

 item.name : the label for the button

 item.enabled : true or false

 item.state : 1 or 0 (only for Umntbuttons)

Introduction

The
UcamMenuActi
ons class

The Umnbutton
and Umntbutton
classes

Customizing the
main menu

 14

UCAM has a built in menu editor to edit the main menu. You can define your own
menu using toolbar manager.

It is possible to create a custom action that will launch your script within the
toolbar manager and attach this custom action to a menu.

 mainmenu : the main menu

 ujobmenu : the job buildup menu in job mode

 ublomenu : the job buildup menu in block mode

 uerrmenu : the error viewer menu

UCAM has a built in toolbar editor to edit the toolbars.

It is possible to create a custom action that will launch your script within the
toolbar editor.

One can create its own UcamActions class with custom code included in a static
block.

The class is loaded after the menus and toolbars are built. This allows defining
functionality, which can be added at the end of an existing menu.

At startup, UCAM checks its classpath for a class named UcamActions in the
default package (root package/no package defined). The order in which is searched
is:

 The user HOME directory

 The ETSCAM_CFG directory

 The ETSCAM_DAT directory

When a class is found, it is loaded, causing its static block to be executed.

The Ucamapp class has a class method add_pb() which allows to directly add a
menu item to the end of a menu.

The method can be accessed as Ucamapp.cO.add_pb().

See the API documentation for the description of the method.

Customizable
menus

Customizing
toolbars

The
UcamActions
class

The add_pb
method

 15

Customizing the Menu

Add the Hello World functionality to a new item in the HyperTool menu, using the
UcamMenuActions class.

/*

 * UcamMenuActions.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Allows to locate the HelloWorld class.

import com.company.ucam.hello.*;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

/**

 * Class loaded by Ucam.

 * Only its static block is executed.

 */

public class UcamMenuActions {

 // Static block executed when the class is loaded.

 static {

 // Action to associate with the Umnbutton.

 // Its action() method is executed when the button is clicked.

 // Calls the sayHello() method from the

 // com.company.ucam.hello.HelloWorld class.

 Ucamaction act = new Ucamaction() {

 public void action() {

 HelloWorld.sayHello();

 }

 };

Continued on next page

Task

The code

 16

Customizing the Menu, Continued

 // Create a new Umnbutton named 'Hello'.

 // The name can be used in the menu and toolbar resource files.

 new Umnbutton("Hello", act);

 }

}

Store the file as sources/UcamMenuActions.java in the HOME directory.

From the HOME directory, run the Java compiler.

 For Linux:

javac –d $HOME –classpath
$HOME:$ETSCAM_INSTALL/classes/ucam.jar
sources/UcamMenuActions.java

 For Windows :

javac –d %HOME% –classpath
%HOME%;%ETSCAM_INSTALL%\classes\ucam.jar
sources\UcamMenuActions.java

A class UcamMenuActions.class is now created in the HOME directory.

Copy the mainmenu file to the HOME\toolbars directory if it is not there yet.

In the mainmenu file, edit the line defining the HyperTool menu as follows:

hypertool_menu : hypertool_grab Hello

Start UCAM.

A Hello item was added to the Hypertool menu.

Select the Hello item.

The output Hello World ! appears in the terminal window.

The code
(continued)

Compile the
code

The mainmenu
resource file

Run the
application

 17

Adding items to a menu

Add the Hello World functionality to a new item in the ‘HyperTool’ menu, using
the UcamActions class.

/*

 * UcamActions.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Allows to locate the HelloWorld class.

import com.company.ucam.hello.*;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

/**

 * Class loaded by Ucam.

 * Only its static block is executed.

 */

public class UcamActions {

 // Static block executed when the class is loaded.

 static {

 // Action to associate with the menu item.

 // Its action() method is executed when the button is clicked.

 // Calls the sayHello() method from the

 // com.company.ucam.hello.HelloWorld class.

 Ucamaction act = new Ucamaction() {

 public void action() {

 HelloWorld.sayHello();

 }

 };

Continued on next page

Task

The code

 18

Adding items to a menu, Continued

 // Adds a button called 'say_hello' with label 'Say Hello'

 // to the hypertool menu.

 Ucamapp.cO.add_pb("say_hello",

 "Say Hello", null, act,

 "hypertool_menu", true);

 }

}

Store the file as sources/UcamActions.java in the HOME directory.

From the HOME directory, run the Java compiler.

 For Linux:

javac –d $HOME –classpath
$HOME:$ETSCAM_INSTALL/ucam/classes/ucam.jar
sources/UcamActions.java

 For Windows:

javac –d %HOME% –classpath
%HOME%;%$ETSCAM_INSTALL%\ucam\classes\ucam.jar
sources\UcamActions.java

A class UcamActions.class is now created in the HOME directory.

Start UCAM.

A Say Hello item was added to the Hypertool menu.

Select the Say Hello item.

The output Hello World ! appears in the terminal window.

The code
(continued)

Compile the
code

Run the
application

 19

Chapter 3 – Designing User Interfaces

Overview

This chapter explains how to design user interfaces and add them to Ucam.

This chapter contains the following topics.

Topic See Page

HyperTool User Interface APIs 20

Write an attribute viewer 21

Introduction

Contents

 20

HyperTool User Interface APIs

Swing is a standard Java User Interface package included in Java 2. It contains an
extensive set of UI elements. The basic package for Swing is javax.swing.

An extensive tutorial about Swing can be found at
https://docs.oracle.com/javase/tutorial/uiswing/.

The previous versions of UCAM (non-Java based) contained a HyperTool API for
User Interfaces based on X Windows/Motif. This API has been converted to Java
and published as the com.barco.ets.ucam.ui package.

This package is primarily available to support automatic translation of old
HyperTool code to Java based code. Its use for new developments is highly
discouraged.

The HyperTool ui package is based on Swing, which allows existing User
Interfaces written with the ui package to be extended using Swing.

Each component from the ui package has an embedded Swing component: the
javaPeer. This Swing component can be retrieved using the getJavaPeer() method
from the com.barco.ets.ucam.ui.Uiobj class.

Except for the UCAM main window, all UCAM windows are based on Swing
JDialog instances attached to the main window. The Uiobj.getFrame() class
method allows to retrieve the JFrame component of the UCAM main window
which allows to add new JDialog instances to UCAM.

Swing

The HyperTool
ui package

Mixing Swing
with the ui
package

Adding windows
to UCAM

 21

Writing an attribute viewer

Write an application, which displays a window containing a table with all the
attributes of the current Job.

Add two buttons:

 Refresh to update the attribute table

 Cancel to close the window

The functionality should be callable from a menu item in the HyperTool menu.

/*

 * JobAttributeLister.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Defines the package this class resides in.

// This should be the first line of code in the source file.

package com.company.ucam.attributes;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

// Additional User Interface packages needed.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.border.*;

import javax.swing.table.*;

import javax.swing.event.*;

Continued on next page

Task

The code

 22

Writing an attribute viewer, Continued

/**

 * Implements a JDialog which displays all the attributes

 * of the current job in a JTable.

 */

public class JobAttributeLister extends JDialog {

 // Only one dialog can be created. Once created, it is

 // recycled for later use.

 private static JobAttributeLister dialog = null;

 // The model used to store the attribute data in.

 private DefaultTableModel model;

 // Constructs a new dialog window and initializes all

 // values.

 public JobAttributeLister() {

 // Creates and initializes the JDialog with the

 // Ucam main window as parent and 'Job Attributes'

 // as title.

 super(Uiobj.getFrame(), "Job Attributes");

 getContentPane().setLayout(new BorderLayout());

 ((JPanel)getContentPane()).setBorder(new EmptyBorder(5,

 5, 5, 5));

 // The data for the table is stored in the model,

 // which is initialized with 2 columns.

 model = new DefaultTableModel(new Object[0][0], new

 Object[] {"Name", "Value"});

 JTable table = new JTable(model);

 table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);

 // Add the table to the center of the dialog.

 // The table will resize together with the dialog.

 getContentPane().add(new JScrollPane(table),

 BorderLayout.CENTER);

Continued on next page

The code
(continued)

 23

Writing an attribute viewer, Continued

 // Create a panel to display the control buttons.

 JPanel buttonPanel = new JPanel(new GridLayout(1, 2, 5,

 5));

 buttonPanel.setBorder(new EmptyBorder(5, 0, 0, 0));

 // The refresh button.

 JButton button = new JButton("Refresh");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 refresh();

 }

 });

 buttonPanel.add(button);

 // The cancel button.

 button = new JButton("Cancel");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dialog.hide();

 }

 });

 buttonPanel.add(button);

 getContentPane().add(buttonPanel, BorderLayout.SOUTH);

 // Resize the dialog to its preferred size.

 pack();

 }

 /**

 * Reloads the attributes from the current job and

 * stores them in the table.

 * Called when opening the dialog or pressing the

 * refresh button.

 */

Continued on next page

The code
(continued)

 24

Writing an attribute viewer, Continued

 public void refresh() {

 // Do nothing when there is no current job.

 if (Ucamv6.ucam_job == null) {

 return;

 }

 // Retrieve all the attributes.

 Uobjattrlist attrList = Ucamv6.ucam_job.attributes();

 Uattrobj attr;

 Object[][] values = new Object[attrList.used()][2];

 for (int i = 1; i <= attrList.used(); ++i) {

 attr = (Uattrobj)attrList.at(i);

 if (attr != null) {

 values[i - 1][0] = attr.name();

 values[i - 1][1] = attr.value();

 }

 }

 // Update the model.

 model.setDataVector(values, new Object[] {"Name",

 "Value"});

 }

 /**

 * Refreshes and shows the window.

 * Called when the menu item is selected.

 */

 public static void showDialog() {

 // Create a new dialog when needed.

 if (dialog == null) {

 dialog = new JobAttributeLister();

 }

Continued on next page

The code
(continued)

 25

Writing an attribute viewer, Continued

 dialog.refresh();

 dialog.show();

 }

}

Store the file as sources/com/company/ucam/attributes/JobAttributeLister.java in
the HOME directory.

/*

 * UcamActions.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Allows to locate the JobAttributeLister class.

import com.company.ucam.attributes.*;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

/**

 * Class loaded by Ucam.

 * Only its static block is executed.

 */

public class UcamActions {

 // Static block executed when the class is loaded.

 static {

 // Action to associate with the menu item.

 // Its action() method is executed when the button is clicked.

 // Calls the showDialog() method from the

 // com.company.ucam.attributes.JobAttributeLister class.

Continued on next page

The code
(continued)

 26

Writing an attribute viewer, Continued

 Ucamaction act = new Ucamaction() {

 public void action() {

 JobAttributeLister.showDialog();

 }

 };

 // Adds a button called 'show_attributes' with label

 // 'Show Attributes' to the hypertool menu.

 Ucamapp.cO.add_pb("show_attributes",

 "Show Attributes", null, act,

 "hypertool_menu", false);

 }

}

Store the file as sources/UcamActions.java in the HOME directory.

From the HOME directory, run the Java compiler.

 For Linux:

javac –d $HOME –classpath
$HOME:$ETSCAM_INSTALL/ucam/classes/ucam.jar
sources/com/company/ucam/attributes/JobAttributeLister.java
sources/UcamActions.java

 For Windows:

javac –d %HOME% –classpath
%HOME%;%ETSCAM_INSTALL%\ucam\classes\ucam.jar
sources\com\company\ucam\attributes\JobAttributeLister.java
sources\UcamActions.java

The classes com/company/ucam/attributes/JobAttributeLister.class and
UcamActions.class are now created in the HOME directory.

Start UCAM.

A Show Attributes item was added to the Hypertool menu.

Open a job.

Select the Show Attributes item.

A new window pops up showing the attributes for the job.

The code
(continued)

Compile the
code

Run the
application

 27

Chapter 4 – The HyperTool package Overview

This chapter describes the major classes in the HyperTool package and how to use
them. A number of exercises demonstrate their practical use.

All classes from the HyperTool package can be found in
com.barco.ets.ucam.hypertool.

This chapter contains the following topics.

Topic See Page

Dtl$object 28

Ucamobj and subclasses 29

The Ucamapp class 30

Drawing layers 31

Write a layer viewer 32

Write a clearance measure utility 48

Introduction

Contents

 28

Dtl$object

In order to minimize the effort to convert existing HyperTool scripts from
UCAM v5 and earlier to the new Java based HyperTool, the existing HyperTool
API has been ported to a Java API which matches as good as possible.

In order to mimic the existing HyperTool functionality in Java, the class
methods from the HyperTool classes could not be implemented as class methods in
Java, but instead the notion of a Class Object had to be introduced.

Each class in the Hypertool API descends from the Dtl$object class and
contains all the instance methods of the original HyperTool class. Each of the
classes has a class variable cO, which can be used to access the class method of
the original HyperTool class as instance methods. The class of the cO variable
is an inner class called CO.

EXAMPLE: The class methods of the Ucamapp class can be accessed through
Ucamapp.cO.

The currently published API is considered frozen and uses the above-described
mechanism.

Future developments might rely on normal Java class and instance methods. It is
therefore advised to consult the API documentation for details.

Description

The Class
Object

Future
developments

 29

Ucamobj and subclasses

The Ucamobj class is the common superclass of a number of important UCAM
classes. It defines the common behavior available in each of these subclasses.

The subclasses are:

 Ujob

 Ulayer

 Ucore

 Uape

The Ujob class represents a job in UCAM. A job contains a number of layers
(Ulayer or Ucore instances). It also holds information about the job name, fixture
type and drc parameters.

The HyperTool package contains classes to represent the different layer types:

 Ucore : represents a core

 Ulayer : superclass for the different layer types :

 Udrilayer : represents a drill layer

 Uextlayer : represents an extra layer (mask, silk, etc.)

 Usiglayer : represents a signal layer

Layer instances contain a list of apertures (Uape instances) and additional
information like name, reference points, etc.

The different aperture types are represented by subclasses of the Uape class:

 Ubloape : block apertures

 Uboxape : box apertures

 Uoctape : octagonal box apertures

 Ucirape : circular apertures

 Ucomape : complex apertures

 Utheape : thermal apertures

 Uconape : contour apertures

 Udonape : donut apertures

 Urecape : rectangular apertures

 Utxtape : text apertures

Description

Ujob

Layer classes

Aperture classes

 30

The Ucamapp class

The Ucamapp class defines the basic UCAM functionality in its class methods.

UCAM accesses the Ucamapp functionality through the Ucamv6.ucam$app
variable. The variable is by default set to Ucamapp.cO. One can subclass
Ucamapp and overload the methods in Ucamapp$CO to change the default
behavior. This change is effected by setting Ucamv6.ucam$app to the Class Object
of the Ucamapp subclass.

It is therefore advised to access Ucamapp methods through the Ucamv6.ucam$app
variable.

In order to change the default behavior of the job loaded in UCAM, create a
subclass of Uxjob with the necessary overloaded methods.

Next, create a subclass of Ucamapp and overload the jobclass() method to return
the Class Object of the custom job class. Set the Ucamv6.ucam$app variable to the
Class Object of the custom Ucamapp class.

When a job is opened, or a new job is created, it will be an instance of the custom
job class.

Description

Subclassing
Ucamapp

Subclassing
Ujob

 31

Drawing layers

UCAM contains a highly optimized drawing engine to generate accurate images of
layers, and combine these layers to present a comprehensible image of all selected
layers within a job.

The Displaypar class represents an off-screen drawing area for UCAM objects.

The viewport in combination with the Displaypar size represents the current
transformation between world coordinates (the actual Job coordinates in the
currently set unit) and screen coordinates (the pixels on the screen).

A layer can be drawn in a Displaypar instance using the display() method in the
Ulayer class.

The Udwaplane class is a specialized subclass of Drawingarea, which handles a
set of Displaypar and Uplane instances.

The Displaypar instances correspond with the UCAM planes as defined in the Job
Buildup window and have their corresponding color.

The Uplane instances allow adding additional drawing using the Uplane draw
methods. All drawing operations appear on an off-screen buffer which is copied to
the screen after a repaint() call. When the contents of the Displaypar instances
needs to be displayed on the screen, the updateBitmap() method needs to be called
before the repaint() call.

Introduction

The Displaypar
class

The Udwaplane
class

 32

Write a layer viewer

Write an application, which displays one layer at a time.

The window should contain the following components:

 A drawing area to display the layer

 A combobox listing all the layers in the current job

 A button to restore the view to total

 A togglebutton to switch the skeleton setting

 A refresh button to refresh the combobox

 A cancel button to close the window

The functionality should be callable from a menu item in the HyperTool menu.

/*

 * LayerViewer.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Defines the package this class resides in.

// This should be the first line of code in the source file.

package com.company.ucam.layer;

Task

The code

 33

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

// Additional User Interface packages needed.

import javax.swing.*;

import javax.swing.border.*;

import java.awt.*;

import java.awt.event.*;

Continued on next page

 34

Write a layer viewer, Continued

/**

 * Implements a JDialog with an Udwaplane to display

 * a layer selected in a JComboBox.

 */

public class LayerViewer extends JDialog {

 // Only one dialog can be created. Once created, it is

 // recycled for later use.

 private static LayerViewer dialog = null;

 // The combobox containing the names of all layers.

 private JComboBox comboBox;

 // The drawing area.

 private Udwaplane dwa;

 // The javaPeer of the drawing area.

 private JPanel panel;

 // The DisplayPar of plane 1 of the drawing area.

 private Displaypar dsp;

 // The Graphics to draw directly to the screen.

 private Graphics panelGraphics;

 // The name of the currently selected layer.

 private String layerName;

 // The toggle for the skeleton setting.

 private JToggleButton skeletonButton;

 // The last dragged rectangle.

 private int[] dragRect;

Continued on next page

The code
(continued)

 35

Write a layer viewer, Continued

 /**

 * Constructs a new dialog window and initializes all

 * values.

 */

 public LayerViewer() {

 // Creates and initializes the JDialog with the

 // Ucam main window as parent and 'Layer Viewer'

 // as title.

 super(Uiobj.getFrame(), "Layer Viewer");

 getContentPane().setLayout(new BorderLayout());

 JPanel interior = new JPanel(new BorderLayout(5, 5));

 interior.setBorder(new EmptyBorder(5, 5, 5, 5));

 ((JPanel)getContentPane()).add(interior,

 BorderLayout.CENTER);

 // The changeLayer() method is called when an item

 // is selected in the layer combobox.

 comboBox = new JComboBox();

 comboBox.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 changeLayer();

 }

 });

 interior.add(comboBox, BorderLayout.NORTH);

 // The changeLayer() method is called when the drawing

 // is resized, or a repaint is requested by the OS.

 dwa = new Udwaplane(null, "layer_viewer_dwa");

 Ucamaction act = new Ucamaction() {

 public void action() {

 changeLayer();

 }

 };

Continued on next page

The code
(continued)

 36

Write a layer viewer, Continued

 dwa.setpaintaction(act);

 dwa.setresizeaction(act);

 // The dragRectangle() method is called when the user

 // moves the mouse over the drawing area with a mouse

 // button held down.

 dwa.setmoveaction(new Ucamaction() {

 public void action() {

 dragRectangle();

 }

 });

 // The zoom() method is called when the user releases

 // the mouse button over the drawing area.

 dwa.setreleaseaction(new Ucamaction() {

 public void action() {

 zoom();

 }

 });

 panel = (JPanel)dwa.getJavaPeer();

 panel.setPreferredSize(new Dimension(320, 240));

 interior.add(panel, BorderLayout.CENTER);

 // Create a panel to display the control buttons.

 JPanel buttonPanel = new JPanel(new GridLayout(1, 2, 5,

 5));

 buttonPanel.setBorder(new EmptyBorder(5, 0, 0, 0));

 // The refresh button.

 JButton button = new JButton("Refresh");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 refresh();

 }

 });

Continued on next page

The code
(continued)

 37

Write a layer viewer, Continued

 buttonPanel.add(button);

 // The cancel button.

 button = new JButton("Cancel");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dialog.hide();

 }

 });

 buttonPanel.add(button);

 interior.add(buttonPanel, BorderLayout.SOUTH);

 // Create a toolbar for the totalView and skeleton buttons.

 JToolBar toolBar = new JToolBar();

 // The totalView button.

 button = new JButton(new ImageIcon

 (getClass().getResource("/icons/nozoom.gif")));

 button.setMargin(new Insets(0, 0, 0, 0));

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dialog.totalView();

 }

 });

 toolBar.add(button);

 toolBar.addSeparator();

 // The skeleton button.

 skeletonButton = new JToggleButton(new ImageIcon

 (getClass().getResource("/icons/skeleton0.gif")));

 skeletonButton.setMargin(new Insets(0, 0, 0, 0));

Continued on next page

The code
(continued)

 38

Write a layer viewer, Continued

 skeletonButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dialog.skeleton();

 }

 });

 skeletonButton.setSelectedIcon(new ImageIcon

 (getClass().getResource("/icons/skeleton1.gif")));

 toolBar.add(skeletonButton);

 getContentPane().add(toolBar, BorderLayout.NORTH);

 // Resize the dialog to its preferred size.

 pack();

 }

 /**

 * Checks which layer is selected, loads the layer

 * and displays it. When the layer is changed, a total

 * view is displayed.

 *

 * Called when an item is selected in the layer combobox,

 * or when anything needs to be repainted.

 */

 public void changeLayer() {

 // Check if there is a job loaded.

 if (Ucamv6.ucam_job == null) {

 return;

 }

 // Check if the drawing area is already initialized.

 dsp = dwa.dsp[1];

 if (dsp == null) {

 return;

 }

Continued on next page

The code
(continued)

 39

Write a layer viewer, Continued

 // Initialize the Graphics object for direct drawing

 // to the screen.

 panelGraphics = panel.getGraphics();

 panelGraphics.setXORMode(Color.white);

 // Get the currently selected layer.

 String name = (String)comboBox.getSelectedItem();

 Ulayer layer = Ucamv6.ucam_job.getlayerbyname(name);

 if (layer == null) {

 return;

 }

 layer.load();

 // If a new layer is selected, initialize the dsp

 // to display a total view.

 if (!name.equals(layerName)) {

 layerName = name;

 dsp.totalview(layer.enclosingbox());

 }

 // Draw the layer in the dsp.

 layer.display(dsp);

 // Clear the previous rubber rectangle.

 dragRect = null;

 // Draw to the screen.

 dwa.updateBitmap();

 dwa.repaint();

 }

Continued on next page

The code
(continued)

 40

Write a layer viewer, Continued

 /**

 * Reloads the layer names from the current job and puts

 * them in the combobox.

 * Select the first item.

 *

 * Called when opening the dialog or pressing the

 * refresh button.

 */

 public void refresh() {

 if (Ucamv6.ucam_job == null) {

 return;

 }

 // Clear the combobox.

 comboBox.removeAllItems();

 // Fill up the combobox.

 for (int i = 1; i <= Ucamv6.ucam_job.numlayers(); ++i) {

 comboBox.addItem(Ucamv6.ucam_job.getlayer("all", null,

 i).name());

 }

 // Select the first item, resulting in a totalview

 // of the first layer.

 comboBox.setSelectedIndex(0);

 }

 /**

 * Implements rubberbanding functionality.

 *

 * Called when moving the mouse over the drawing area with

 * a button held down.

 */

Continued on next page

The code
(continued)

 41

Write a layer viewer, Continued

 public void dragRectangle() {

 if (panelGraphics == null) {

 return;

 }

 // We are not interested in the right mouse button.

 if (Uiobj.cO.state.getInt("mb") == 4) {

 return;

 }

 int x = Uiobj.cO.state.getInt("x");

 int y = Uiobj.cO.state.getInt("y");

 int pressX = Uiobj.cO.state.getInt("pressx");

 int pressY = Uiobj.cO.state.getInt("pressy");

 // Erase the old rectangle when there was one.

 // Erasing is done by drawing the rectangle a second

 // time. The XOR setting in panelGraphics makes

 // sure this erases the previous rectangle.

 if (dragRect != null) {

 panelGraphics.drawRect(dragRect[0], dragRect[1],

 dragRect[2], dragRect[3]);

 }

 dragRect = new int[4];

 if (x > pressX) {

 dragRect[0] = pressX;

 dragRect[2] = x - pressX;

 }

 else {

 dragRect[0] = x;

 dragRect[2] = pressX - x;

 }

Continued on next page

The code
(continued)

 42

Write a layer viewer, Continued

 if (y > pressY) {

 dragRect[1] = pressY;

 dragRect[3] = y - pressY;

 }

 else {

 dragRect[1] = y;

 dragRect[3] = pressY - y;

 }

 // Draw the new rectangle.

 panelGraphics.drawRect(dragRect[0], dragRect[1],

 dragRect[2], dragRect[3]);

 }

 /**

 * Zoom in or out.

 *

 * Called when releasing a mouse button.

 */

 public void zoom() {

 if (dsp == null) {

 return;

 }

 if (panelGraphics == null) {

 return;

 }

 // When the right mouse button was released, zoom

 // out with a factor 2.

 if (Uiobj.cO.state.getInt("mb") == 4) {

 dsp.zoomout();

 }

Continued on next page

The code
(continued)

 43

Write a layer viewer, Continued

 // Zoom in.

 else {

 // Remove the drag rectangle.

 if (dragRect != null) {

 panelGraphics.drawRect(dragRect[0], dragRect[1],

 dragRect[2], dragRect[3]);

 }

 dragRect = null;

 // Get the zoom coordinates.

 int x = Uiobj.cO.state.getInt("x");

 int y = Uiobj.cO.state.getInt("y");

 int pressX = Uiobj.cO.state.getInt("pressx");

 int pressY = Uiobj.cO.state.getInt("pressy");

 // The mouse was not moved, zoom with factor 2.

 if ((x == pressX) && (y == pressY)) {

 int width = dwa.width();

 int height = dwa.height();

 dsp.zoomin(x - width/4, y - height/4,

 x + width/4, y + height/4);

 }

 else {

 dsp.zoomin(pressX, pressY, x, y);

 }

 }

 // Redraw the layer with the new settings.

 changeLayer();

 }

Continued on next page

The code
(continued)

 44

Write a layer viewer, Continued

 /**

 * Restore the total view of the layer.

 *

 * Called when the totalview button was clicked.

 */

 public void totalView() {

 if (dsp == null) {

 return;

 }

 layerName = null;

 changeLayer();

 }

 /**

 * Change the skeleton setting.

 *

 * Called when the skeleton button was clicked.

 */

 public void skeleton() {

 if (dsp == null) {

 return;

 }

 if (skeletonButton.isSelected()) {

 dsp.setoptions("skeleton");

 }

 else {

 dsp.setoptions("solid");

 }

 changeLayer();

 }

Continued on next page

The code
(continued)

 45

Write a layer viewer, Continued

 /**

 * Refreshes and shows the window.

 *

 * Called when the menu item is selected.

 */

 public static void showDialog() {

 if (dialog == null) {

 dialog = new LayerViewer();

 }

 dialog.refresh();

 dialog.show();

 }

}

Store the file as sources/com/company/ucam/layer/LayerViewer.java in the
HOME directory.

/*

 * UcamActions.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Allows to locate the LayerViewer class.

import com.company.ucam.layer.*;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

Continued on next page

The code
(continued)

 46

Write a layer viewer, Continued

/**

 * Class loaded by Ucam.

 * Only its static block is executed.

 */

public class UcamActions {

 // Static block executed when the class is loaded.

 static {

 // Action to associate with the menu item.

 // Its action() method is executed when the button is clicked.

 // Calls the showDialog() method from the

 // com.company.ucam.layer.LayerViewer class.

 Ucamaction act = new Ucamaction() {

 public void action() {

 LayerViewer.showDialog();

 }

 };

 // Adds a button called 'layer_viewer' with label

 // 'View Layers' to the hypertool menu.

 Ucamapp.cO.add_pb("layer_viewer",

 "View Layers", null, act,

 "hypertool_menu", false);

 }

}

Store the file as sources/UcamActions.java in the HOME directory.

From the HOME directory, run the Java compiler.

 For Linux:

javac –d $HOME –classpath
$HOME:$ETSCAM_INSTALL/ucam/classes/ucam.jar
sources/com/company/ucam/layer/LayerViewer.java
sources/UcamActions.java

Continued on next page

The code
(continued)

Compile the
code

 47

Write a layer viewer, Continued

 For Windows:

javac –d %HOME% –classpath
%HOME%;%ETSCAM_INSTALL%\ucam\classes\ucam.jar
sources\com\company\ucam\layer\LayerViewer.java
sources\UcamActions.java

The classes com/company/ucam/layer/LayerViewer.class and UcamActions.class
are now created in the HOME directory.

Start UCAM.

A View Layers item was added to the Hypertool menu.

Open a job.

Select the View Layers item.

A new window pops up with the desired functionality.

Compile the
code (continued)

Run the
application

 48

Write a clearance measure utility

Write an application that allows measuring the clearance between two objects in
the UCAM main window.

The functionality should be callable from a menu item in the HyperTool menu.

/*

 * ClearanceMeasure.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Defines the package this class resides in.

// This should be the first line of code in the source file.

package com.company.ucam.clearance;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

// Additional User Interface packages needed.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.border.*;

/**

 * Implements a JDialog with the necessary buttons

 * and result field.

 */

public class ClearanceMeasure extends JDialog {

 // Only one dialog can be created. Once created, it is

 // recycled for later use.

 private static ClearanceMeasure dialog;

Continued on next page

Task

The code

 49

Write a clearance measure utility, Continued

 // The field to display the measure result.

 private JTextField textField;

 // The last dragged line.

 private int[] dragLine;

 // The Graphics to draw directly to the screen.

 private Graphics graphics;

 // The javaPeer of the main drawing area.

 private JPanel panel;

 // The DisplayPar of plane 1 of the drawing area.

 private Displaypar dsp;

 /**

 * Constructs a new dialog window and initializes all

 * values.

 */

 public ClearanceMeasure() {

 // Creates and initializes the JDialog with the

 // Ucam main window as parent and 'Measure Clearance'

 // as title.

 super(Uiobj.getFrame(), "Measure Clearance");

 getContentPane().setLayout(new BorderLayout());

 ((JPanel)getContentPane()).setBorder(new EmptyBorder(5,

 5, 5, 5));

 JPanel resultPanel = new JPanel(new BorderLayout(5, 5));

 resultPanel.add(new JLabel("clearance"),

 BorderLayout.WEST);

 textField = new JTextField();

 textField.setEditable(false);

 resultPanel.add(textField, BorderLayout.CENTER);

Continued on next page

The code
(continued)

 50

Write a clearance measure utility, Continued

 getContentPane().add(resultPanel, BorderLayout.CENTER);

 // Create a panel to display the control buttons.

 JPanel buttonPanel = new JPanel(new GridLayout(1, 2, 5,

 5));

 buttonPanel.setBorder(new EmptyBorder(5, 0, 0, 0));

 // The measure button.

 JButton button = new JButton("Measure");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 setup();

 }

 });

 buttonPanel.add(button);

 // The cancel button.

 button = new JButton("Cancel");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dialog.hide();

 }

 });

 buttonPanel.add(button);

 getContentPane().add(buttonPanel, BorderLayout.SOUTH);

 pack();

 }

Continued on next page

The code
(continued)

 51

Write a clearance measure utility, Continued

 /**

 * Prepares the main window to measure distances and display

 * rubber lines.

 *

 * Called when the measure button is clicked.

 */

 public void setup() {

 // Action to perform when the user drags with a mouse

 // button down over the main window.

 Ucamaction dragAction = new Ucamaction() {

 public void action(double x1, double y1, double x2,

 double y2) {

 dragLine(x1, y1, x2, y2);

 }

 };

 // Action to perform when the user releases a mouse

 // button over the main window.

 Ucamaction releaseAction = new Ucamaction() {

 public void action(double x1, double y1, double x2,

 double y2) {

 showClearance(x1, y1, x2, y2);

 }

 };

 // Sets the current rubberband action.

 // Remains valid until another action is set.

 Ucamapp.cO.rubberband("Measure clearance", releaseAction,

 dragAction, true, true);

 }

Continued on next page

The code
(continued)

 52

Write a clearance measure utility, Continued

 /**

 * Implements rubberbanding functionality.

 *

 * Called when moving the mouse over the drawing area with

 * a button held down.

 */

 public void dragLine(double x1, double y1, double x2,

 double y2) {

 // Determine the graphics of the main drawing area.

 if (graphics == null) {

 Udwaplane dwa = Ucamapp.cO.getMainDrawingarea();

 panel = (JPanel)dwa.getJavaPeer();

 graphics = panel.getGraphics();

 graphics.setXORMode(Color.white);

 }

 // Erase the old line when there was one.

 // Erasing is done by drawing the line a second

 // time. The XOR setting in panelGraphics makes

 // sure this erases the previous line.

 if (dragLine != null) {

 graphics.drawLine(dragLine[0], dragLine[1],

 dragLine[2], dragLine[3]);

 }

 dragLine = new int[4];

 Displaypar dsp = Ucamapp.cO.curdsp();

 Upoint p = new Upoint(x1, y1);

 p = p.stow(dsp);

 p = Ucamapp.cO.snappoint(p);

 p = p.wtos(dsp);

 dragLine[0] = (int)p.x();

 dragLine[1] = (int)p.y();

Continued on next page

The code
(continued)

 53

Write a clearance measure utility, Continued

 p = new Upoint(x2, y2);

 p = p.stow(dsp);

 p = Ucamapp.cO.snappoint(p);

 p = p.wtos(dsp);

 dragLine[2] = (int)p.x();

 dragLine[3] = (int)p.y();

 // Draw the new line.

 graphics.drawLine(dragLine[0], dragLine[1], dragLine[2],

 dragLine[3]);

 }

 /**

 * Calculates the clearance and displays it.

 *

 * Called when releasing a mouse button.

 */

 public void showClearance(double x1, double y1, double x2,

 double y2) {

 // Clear the drag line when there was one.

 if (dragLine != null) {

 graphics.drawLine(dragLine[0], dragLine[1],

 dragLine[2], dragLine[3]);

 }

 dragLine = null;

 if (Ucamv6.ucam_job == null) {

 Ucamapp.cO.warning("No current job.");

 return;

 }

Continued on next page

The code
(continued)

 54

Write a clearance measure utility, Continued

 // Determine the two objects selected.

 Ulayer lay = Ucamv6.ucam_job.lay_in_plane(1);

 if (lay == null) {

 return;

 }

 Upoint p1 = new Upoint(x1, y1);

 Upoint p2 = new Upoint(x2, y2);

 Displaypar dsp = Ucamapp.cO.curdsp();

 double radius = dsp.stow_val(5);

 Uapeobj apeobj1 = lay.closestobj(p1, radius);

 Uapeobj apeobj2 = lay.closestobj(p2, radius);

 // Calculate the clearance when 2 objects were selected.

 if ((apeobj1 != null) && (apeobj2 != null)) {

 textField.setText(DTLBuiltin.string(

 apeobj1.clearance_to(apeobj2)));

 }

 else {

 textField.setText("");

 Ucamapp.cO.warning("No object found.");

 }

 graphics = null;

 }

 /**

 * Refreshes and shows the dialog.

 *

 * Called when the menu item is selected.

 */

 public static void showDialog() {

 if (dialog == null) {

 dialog = new ClearanceMeasure();

 }

Continued on next page

The code
(continued)

 55

Write a clearance measure utility, Continued

dialog.textField.setText("");

 dialog.show();

 }

}

Store the file as sources/com/company/ucam/clearance/ClearanceMeasure.java
in the HOME directory.

/*

 * UcamActions.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Allows to locate the ClearanceMeasure class.

import com.company.ucam.clearance.*;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

/**

 * Class loaded by Ucam.

 * Only its static block is executed.

 */

public class UcamActions {

 // Static block executed when the class is loaded.

 static {

 // Action to associate with the menu item.

 // Its action() method is executed when the button

 // is clicked.

 // Calls the showDialog() method from the

 // com.company.ucam.clearance.ClearanceMeasure class.

Continued on next page

The code
(continued)

 56

Write a clearance measure utility, Continued

 Ucamaction act = new Ucamaction() {

 public void action() {

 ClearanceMeasure.showDialog();

 }

 };

 // Adds a button called 'measure_clearance' with label

 // 'Measure Clearance' to the hypertool menu.

 Ucamapp.cO.add_pb("measure_clearance",

 "Measure Clearance", null, act,

 "hypertool_menu", false);

 }

}

Store the file as sources/UcamActions.java in the HOME directory.

From the HOME directory, run the Java compiler.

 For Linux:

javac –d $HOME –classpath
$HOME:$ETSCAM_INSTALL/ucam/classes/ucam.jar
sources/com/company/ucam/clearance/ClearanceMeasure.java
sources/UcamActions.java

 For Windows:

javac –d %HOME% –classpath
%HOME%;%ETSCAM_INSTALL%\ucam\classes\ucam.jar
sources\com\company\ucam\clearance\ClearanceMeasure.java
sources\UcamActions.java

The classes com/company/ucam/clearance/ClearanceMeasure.class and
UcamActions.class are now created in the HOME directory.

Start UCAM.

A Measure Clearance item was added to the Hypertool menu.

Open a job.

Select the Measure Clearance item.

A new window pops up.

Continued on next page

The code
(continued)

Compile the
code

Run the
application

 57

Write a clearance measure utility, Continued

Click the Measure button.

Drag the mouse over the main window. A rubberline appears.

Release the mouse button. The calculated measure is displayed.

Run the
application
(continued)

 58

Chapter 5 – Custom Panels

Overview

Ucam already has extensive support for the creation of panels through the
PanelPlus product, but it is possible to either modify the functionality of the
PanelPlus product, or add completely new panel modules.

This chapter contains the following topics.

Topic See Page

Creating a Panel module 59

Write a Step and Repeat module 60

Extending PanelPlus 68

PanelPlus and its public hooks 69

Exercise: PrintPanel 73

Exercise: DrillCouponPanel 79

Introduction

Contents

 59

Creating a Panel module

UCAM allows adding a menu item in the Panel menu cascade through the
upanel.subfiles entry in ucam.db and the UcamPanels class.

The ucam.db entry upanel.subfiles is a comma-separated list of custom panel
modules to be added to the Panel cascade after the PanelPlus menu item.

For each entry, a menu item is added with the same name as the entry. White space
before and after the entry is ignored, but the entry itself is case sensitive.

The action to be performed when selecting the item is defined in the UcamPanels
class.

For each of the items added through the upanel.subfiles entry, the UcamPanels
class should have a class method defined with the exact same name appended with
‘_init’. This method is executed when the corresponding item is selected.

UCAM looks for the class in the following order:

 The user HOME directory

 The ETSCAM_CFG directory

 The ETSCAM_DAT directory

 The classes directory in the UCAM installation directory

Description

upanel.subfiles

The UcamPanels
class

 60

Write a Step and Repeat module

Write an application which implements a simple step and repeat given the repeat
and clearance values.

/*

 * StepRepeat.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Defines the package this class resides in.

// This should be the first line of code in the source file.

package com.company.ucam.panels;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

// Additional User Interface packages needed.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.border.*;

/**

 * Implements a JDialog with the necessary buttons

 * and input fields.

 */

public class StepRepeat extends JDialog {

 // Only one dialog can be created. Once created, it is

 // recycled for later use.

 private static StepRepeat dialog = null;

Continued on next page

Task

The code

 61

Write a Step and Repeat module, Continued

 // The input fields for repeat and clearance values.

 private JTextField repeatX;

 private JTextField repeatY;

 private JTextField clearanceX;

 private JTextField clearanceY;

 /**

 * Constructs a new dialog window and initializes all values.

 */

 public StepRepeat() {

 // Creates and initializes the JDialog with the

 // Ucam main window as parent and 'Step-Repeat' as title.

 super(Uiobj.getFrame(), "Step-Repeat");

 getContentPane().setLayout(new BorderLayout(5, 5));

 ((JPanel)getContentPane()).setBorder(new EmptyBorder(5,

 5, 5, 5));

 // Create a panel for the input fields and their labels.

 JPanel topPanel = new JPanel(new BorderLayout(5, 5));

 JPanel labelPanel = new JPanel(new GridLayout(2, 1, 5,

 5));

 labelPanel.add(new JLabel("Repeat"));

 labelPanel.add(new JLabel("Clearance"));

 topPanel.add(labelPanel, BorderLayout.WEST);

 JPanel textFieldPanel = new JPanel(new GridLayout(2, 2,

 5, 5));

 repeatX = new JTextField();

 textFieldPanel.add(repeatX);

 repeatY = new JTextField();

 textFieldPanel.add(repeatY);

 clearanceX = new JTextField();

 textFieldPanel.add(clearanceX);

Continued on next page

The code
(continued)

 62

Write a Step and Repeat module, Continued

 clearanceY = new JTextField();

 textFieldPanel.add(clearanceY);

 topPanel.add(textFieldPanel, BorderLayout.CENTER);

 getContentPane().add(topPanel, BorderLayout.NORTH);

 // Create a panel for the control buttons.

 JPanel buttonPanel = new JPanel(new GridLayout(1, 2, 5,

 5));

 // The OK button.

 JButton button = new JButton("OK");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dialog.apply();

 dialog.hide();

 }

 });

 buttonPanel.add(button);

 // The apply button.

 button = new JButton("Apply");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dialog.apply();

 }

 });

 buttonPanel.add(button);

Continued on next page

The code
(continued)

 63

Write a Step and Repeat module, Continued

 // The cancel button.

 button = new JButton("Cancel");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dialog.hide();

 }

 });

 buttonPanel.add(button);

 getContentPane().add(buttonPanel, BorderLayout.SOUTH);

 pack();

 }

 /**

 * Perform a step and repeat based upon the input values.

 *

 * Called when the OK or Apply button is clicked.

 */

 public void apply() {

 int repX;

 int repY;

 double clearX;

 double clearY;

 int apeNum;

 int numLayers;

 Ulayer lay;

 Ubloape block;

 Urectangle jobSize;

 double stepX;

 double stepY;

 Ulayer blockLayer;

Continued on next page

The code
(continued)

 64

Write a Step and Repeat module, Continued

 // Read in the parameters.

 try {

 repX = new Integer(repeatX.getText()).intValue();

 repY = new Integer(repeatY.getText()).intValue();

 clearX = new Double(

 clearanceX.getText()).doubleValue();

 clearY = new Double(

 clearanceY.getText()).doubleValue();

 } catch (NumberFormatException e) {

 Ucamapp.cO.warning("Invalid step-repeat parameters");

 refresh();

 return;

 }

 if (Ucamv6.ucam_job == null) {

 Ucamapp.cO.warning("No current job");

 return;

 }

 // Calculate the step.

 jobSize = Ucamv6.ucam_job.enclosingbox("all");

 stepX = jobSize.xsize() + clearX;

 stepY = jobSize.ysize() + clearY;

 Ucamapp.cO.muri_setup(Ucamv6.ucam_job, “Step Repeat”);

 // For each of the layers, create a new block aperture

 // containing all the information from the layer and flash it

 // according to the step and repeat parameters.

 apeNum = Ucamv6.ucam_job.ape_max_number() + 1;

 numLayers = Ucamv6.ucam_job.numlayers();

 for (int i = 1; i <= numLayers; ++i) {

 lay = (Ulayer)Ucamv6.ucam_job.getlayer("all", null, i);

 if (!lay.active()) {

 continue;

 }

Continued on next page

The code
(continued)

 65

Write a Step and Repeat module, Continued

 blockLayer = Ulayer.cO.create((String)lay.CLASS());

 blockLayer.copy(lay, "all");

 lay.erase("all");

 lay.ape_clean();

 block = (Ubloape)Ubloape.cO.create(apeNum, blockLayer);

 lay.addape(block);

 block.repeat(repX, stepX, 0, repY, stepY, 0);

 }

 // Repaint the main drawing area to display the step and repeat.

 Ucamapp.cO.total_view();

 }

 /**

 * Initializes the input fields.

 */

 public void refresh() {

 repeatX.setText("1");

 repeatY.setText("1");

 clearanceX.setText("0");

 clearanceY.setText("0");

 }

 /**

 * Refreshes and shows the dialog.

 *

 * Called when the menu item is selected.

 */

 public static void showDialog() {

 if (dialog == null) {

 dialog = new StepRepeat();

 }

Continued on next page

The code
(continued)

 66

Write a Step and Repeat module, Continued

 dialog.refresh();

 dialog.show();

 }

}

Store the file as sources/com/company/ucam/panels/StepRepeat.java in the
HOME directory.

/*

 * UcamPanels.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Allows to locate the custom panel classes.

import com.company.ucam.panels.*;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

/**

 * Class where Ucam looks for panel initialization methods.

 */

public class UcamPanels {

 // Method called for the StepRepeat module.

 public static void StepRepeat_init() {

 StepRepeat.showDialog();

 }

}

Store the file as sources/UcamPanels.java in the HOME directory.

In ucam.db set the upanel.subfiles entry to StepRepeat.

The code
(continued)

Modify the
upanel.subfiles
entry

 67

From the HOME directory, run the Java compiler.

 For Linux:

javac –d $HOME –classpath
$HOME:$ETSCAM_INSTALL/ucam/classes/ucam.jar
sources/com/company/ucam/panels/StepRepeat.java
sources/UcamPanels.java

 For Windows:

javac –d %HOME% –classpath
%HOME%;%ETSCAM_INSTALL%\ucam\classes\ucam.jar
sources\com\company\ucam\panels\StepRepeat.java
sources\UcamPanels.java

The classes com/company/ucam/panels/StepRepeat.class and UcamPanels.class
are now created in the HOME directory.

Start UCAM.

Open a job.

A StepRepeat item was added to the Panel cascade.

Select the StepRepeat item.

A new window pops up.

Enter the desired values.

Click the OK button. The StepRepeat window disappears.

Click the TotalView button to see the result of the StepRepeat operation.

Compile the
code

Run the
application

 68

Extending PanelPlus

When PanelPlus supplies almost the correct functionality, it might be more
interesting to modify PanelPlus instead of writing a complete new Panel module.

The necessary hooks are in place to customize the standard PanelPlus module and
insert it into Ucam.

The Upanel class represents the PanelPlus window with most of its functionality.
By subclassing the Upanel class, overloading some of its methods and instantiating
an instance of the new class, it is possible to customize its functionality to match
specific needs. When overloading a method, one can call ‘super()’ to obtain the
original functionality.

When running a PanelPlus session a determined flow is followed.

When changing from the setups to the results panel, the following Upanel instance
methods are called:

 fill_job_list()

 calc_result(Upanelparam, Uframe, boolean, boolean) : called for each of the
frame jobs in the frame set.

When a result is selected in the results list, the following Upanel instance methods
are called:

 calc_offset(Uresult, Uframe, String)

 fill_coupon_list(Uframe, Uresult)

 calc_coupon_positions(Uframe, Uresult)

 make_background(Uresult, Uframe, double)

When pressing DO, the following Upanel instance methods are called:

 make_background(Uresult, Uframe, double)

 For each of the active layers in the job:

 make_border(Uresult, Uframe, Ulayer, Ulayer, Dict)

 add_before(Uresult, Uframe, Ulayer, Ulayer)

 add_after(Uresult, Uframe, Ulayer, Ulayer)

 add_coupons(Uframe, Ulayer, Ulayer)

 change_layname(Ulayer)

 replace_text(Ujob, Dict, Uresult)

 sr_end(Uframe)

 change_jobname(Ujob)

Introduction

The Upanel
class

Upanel
processing flow

 69

PanelPlus and its public hooks

 public void fill_job_list()

Jobs to be panelized are filled in the job list represented by the ‘jobs’ instance
variable of type Upanellist. The elements of the list are Upaneljob instances.

 Uresult cal_result(Upanelparam pan, Uframe frm, boolean mutli, boolean
lshape)

Calculates the result for each frame in the frame list.

Parameters:
 pan – defines the panel parameter to use
 frm – defines the frame to use
 multi – is true for multi jobs panels
 lshape – is true when L-shape nesting is selected

The class Upanelparam carries the required variables defined during the input
session .

(GUI of PanelPlus; prior switching to result)

It provides all necessary methods to get and set those variables. calc_result()
returns a Uresult instance which contains information about a “Panelized” image.

(GUI of PanelPlus, result screen; each entry of the result list has its own Uresult)

It describes the step and repeat, clearance, rotation, total dimension, number of
panels, fill and yield, offset, background layer and the group of flashpoints.

 public void calc_offset(Uresult res, Uframe frm, String pos, String place)

Calculates and fills in the offset for Uresult. The offset is the absolute coordinate
of the bottom left point of the total step and repeat image. It gets called when
selecting a result in the result list.

Parameters:
 res – should be one of the modified results obtained from calc_result()
 frm – should be the same frame as used for result calculation
 pos – “relative” or “datum”
 place – “cn”, “tl”, “tr”, “br”, “ll”, “rr”, “tt”, “bb”

 public void fill_coupons_list(Uframe frm, Uresult res)

Fills the coupon list with all coupons defined in the coupon setup file. For each
coupon a Ucoupon instance is added to the coupon list. The positions, place, kind,
clearance and distance will be added to each coupon. The calculation of the
absolute coordinates of the coupon is done during panelization. It gets called when
selecting a result in the result list.

Called when
result selected

 70

PanelPlus and its public hooks, Continued

Parameters:
 frm – The same frame to use.
 res – The same result to use.

The following example shows how to parse the coupons list during panelize and
modify as required.

nCoupons = coupons.count();

for (int I = 1; I <= nCoupons; ++I) {

 Ucoupon coupon = (Ucoupon)coupons.get(I);

 // one can call methods of the current coupon eg.

 // coupon.clearpos()

}

See DrillCouponPanel example on how to generate and add coupns.

 public void calc_coupons_positions(Uframe frm, Uresult res)

Calcuates the absolute flashpoints of the coupons based on the relative indications
and the result information. It gets called when selecting a result in the result list.
Parameters:
 frm – The used frame.
 res – The used result.

 public void make_background(Uresult res, Ufrme frm, double routclr)

Calculates and sets the backlay of the currently used result. This method creates a
layer with a contour aperture defining the background of the panelized image. The
form defined in this layer will be cut out of the frame before adding the job blocks.
It gets called when selecting a result in the result list to draw in the preview.

Parameters:
 res – The used result
 frm – The used frame
 routclr – The rout clearance

When pressing DO in PanelPlus result GUI, the following Upanel instance
methods are called:

public void make_background(Uresult res, Uframe frm, double routclr)

 71

PanelPlus and its public hooks, Continued

For each active layer in the job Ucam calls the following methods:

 public void make_border(Uresult res, Uframe frm, Ulayer out_lay, Ulayer lay,
Dict txtdb)

Creates and out_lay which contains the border that encloses the panelized image.
Gets called for each layer.

Parameters:
 res – The used result
 frm – The used frame
 out_lay – The layer to be used
 lay – The job layer that is currently panelized
 txtdb – A dictionary with 5 labels with information from the setup file
 The symbols are the aperture number specified in the setup file,
 the corresponding values are the strings entered in the text fields
 of the panel editor.

 public void add_before(Uresult res, Uframe frm, Ulayer out_lay, Ulayer
inp_lay)

Dummy method, added to have another hook for customizing. Gives the
opportunity to add special features to the border layer (out_lay) created in the
make_border method. Gets called for each layer.

This method is called before the actual input of the job blocks.

Parameters:
 res – The used result
 frm – The used frame
 out_lay – The layer to be used
 inp_lay – The job layer that is currently panelized

 public void add_coupons(Uframe frm, Uayer outlay, Ulayer lay)

Adds all the coupons out of the coupons list to the outlay. The positions of the
coupons were calculated in the calc_coupon_position method. If the backlayer
contains information at this position a negative rectangle is cut out of the outlay.
The size of the rectangle is the enclosing box of the coupon job (spread a little bit).
If the coupon job contains an outline layer, the enclosing box of that layer is taken.
Gets called for each layer.

Parameters:
 frm – The used frame
 out_lay – The layer contains frame + step&repeat image
 lay – The layer; only the single image

Called for each
layer

 72

PanelPlus and its public hooks, Continued

 public String change_layname(Ulayer lay)

Sets the name of the layer after panelization. Gets called for each layer.

The following methods get called once after panlization:

 public void replace_text(Ujob job, Dict txtdb, Uresult res)

Replaces text apertures according to the codes set in the set file and the text labels
defined in the dictionary txtdb. The symbols in this dictionary are the aperture
numbers specified in the setup file. The corresponding values are the Strings
entered in the text fill-ins of the panel editor. Gets called when the complete job is
panelized.

Parameters:
 job – The panelized job
 txtdb – The dictionary with the strings
 res – The current result

 public void sr_end(Uframe frm)

Dummy method, added to have another hook for customizing. Gives the possibility
to make final changes to the job that is output. At this point, the panelized job is
the ucam_job.

Parameter:

 frm – The used frame

 public String change_jobname(Ujob job)

Sets the name of the job after panelization.

Parameter:

 job – The current job

Called once

 73

Exercise: PrintPanel

Make a Upanel subclass, which retains the original PanelPlus functionality, but
prints out a message during each step.

/*

 * PrintPanel.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Defines the package this class resides in.

// This should be the first line of code in the source file.

package com.company.ucam.panels;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

/**

 * Custom Upanel subclass which prints out a message

 * when each of the Upanel methods is called.

 */

public class PrintPanel extends Upanel.CO {

 public void fill_job_list() {

 System.out.println("fill_job_list()");

 super.fill_job_list();

 }

 public Uresult calc_result(Upanelparam pan, Uframe frm,
boolean multi, boolean lshape) {

 System.out.println("calc_result(Upanelparam, Uframe,
boolean, boolean)");

 return super.calc_result(pan, frm, multi, lshape);

 }

Continued on next page

Task

The code

 74

Exercise: PrintPanel, Continued

 public void calc_offset(Uresult res, Uframe frm, String
pos, String place) {

 System.out.println("calc_offset(Uresult, Uframe,
String)");

 super.calc_offset(res, frm, pos, place);

 }

 public void calc_offset(Uresult res, Uframe frm, String
pos, Upoint place) {

 System.out.println("calc_offset(Uresult, Uframe,
Upoint)");

 super.calc_offset(res, frm, pos, place);

 }

 public void fill_coupon_list(Uframe frm, Uresult res) {

 System.out.println("fill_coupon_list(Uframe, Uresult)");

 super.fill_coupon_list(frm, res);

 }

 public void calc_coupon_positions(Uframe frm, Uresult res)
{

 System.out.println("calc_coupon_positions(Uframe,
Uresult)");

 super.calc_coupon_positions(frm, res);

 }

 public void make_background(Uresult res, Uframe frm, double
routclr) {

 System.out.println("make_background(Uresult, Uframe,
double)");

 super.make_background(res, frm, routclr);

 }

Continued on next page

The code
(continued)

 75

Exercise: PrintPanel, Continued

 public void make_border(Uresult res, Uframe frm, Ulayer
out_lay, Ulayer lay, Dict txtdb) {

 System.out.println("make_border(Uresult, Uframe, Ulayer,
Ulayer, Dict)");

 super.make_border(res, frm, out_lay, lay, txtdb);

 }

 public void add_before(Uresult res, Uframe frm, Ulayer
out_lay, Ulayer inp_lay) {

 System.out.println("add_before(Uresult, Uframe, Ulayer,
Ulayer)");

 super.add_before(res, frm, out_lay, inp_lay);

 }

 public void add_after(Uresult res, Uframe frm, Ulayer
out_lay, Ulayer inp_lay) {

 System.out.println("add_after(Uresult, Uframe, Ulayer,
Ulayer)");

 super.add_after(res, frm, out_lay, inp_lay);

 }

 public void add_coupons(Uframe fr, Ulayer outlay, Ulayer
lay) {

 System.out.println("add_coupons(Uframe, Ulayer,
Ulayer)");

 super.add_coupons(fr, outlay, lay);

 }

 public String change_layname(Ulayer lay) {

 System.out.println("change_layname(Ulayer)");

 return super.change_layname(lay);

 }

Continued on next page

The code
(continued)

 76

Exercise: PrintPanel, Continued

 public void replace_text(Ujob job, Dict txtdb, Uresult res)
{

 System.out.println("replace_text(Ujob, Dict, Uresult)");

 super.replace_text(job, txtdb, res);

 }

 public void sr_end(Uframe frm) {

 System.out.println("sr_end(Uframe)");

 super.sr_end(frm);

 }

 public String change_jobname(Ujob job) {

 System.out.println("change_jobname(Ujob)");

 return super.change_jobname(job);

 }

}

Store the file as sources/com/company/ucam/panels/PrintPanel in the HOME
directory.

/*

 * UcamPanels.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Allows to locate the custom panel classes.

import com.company.ucam.panels.*;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

Continued on next page

The code
(continued)

 77

Exercise: PrintPanel, Continued

/**

 * Class where Ucam looks for panel initialization methods.

 */

public class UcamPanels {

 // Method called for the PrintPanel module.

 public static void PrintPanel_init() {

 Ucamv6.u$panel = new PrintPanel();

 ((Upanel.CO)Ucamv6.u$panel).run("PrintPanel");

 }

}

Store the file as sources/UcamPanels.java in the HOME directory.

In ucam.db set the upanel.subfiles entry to PrintPanel.

From the HOME directory, run the Java compiler.

 For Linux:

javac –d $HOME –classpath
$HOME:$ETSCAM_INSTALL/ucam/classes/ucam.jar
sources/com/company/ucam/panels/PrintPanel.java
sources/UcamPanels.java

 For Windows:

javac –d %HOME% –classpath
%HOME%;%ETSCAM_INSTALL%\ucam\classes\ucam.jar
sources\com\company\ucam\panels\PrintPanel.java
sources\UcamPanels.java

The classes com/company/ucam/panels/PrintPanel.class and UcamPanels.class
are now created in the HOME directory.

Start UCAM.

Open the cad job.

Create a Frame set with the panel1 and panel2 jobs.

A PrintPanel item was added to the Panel cascade.

Continued on next page

The code
(continued)

Modify the
upanel.subfiles
entry

Compile the
code

Run the
application

 78

Exercise: PrintPanel, Continued

Select the PrintPanel item.

Create a panel using the Frame set.

When running through the PanelPlus flow, the messages are print out in the
terminal window.

Run the
application
(continued)

 79

Exercise: DrillCouponPanel

Make a Upanel subclass, which defines a coupon called “DrillCoupon” containing
a single flash of each of the used circular apertures of the drill layers.

/*

 * DrillCouponPanel.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Defines the package this class resides in.

// This should be the first line of code in the source file.

package com.company.ucam.panels;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

/**

 * Custom Upanel subclass which overloads the

 * fill_coupon_list method.

 */

public class DrillCouponPanel extends Upanel.CO {

 /**

 * Fills up the coupons list with all the coupons

 * for this panel.

 * A new Ucoupon is constructed for the 'DrillCoupon'

 * coupon.

 */

Continued on next page

Task

The code

 80

Exercise: DrillCouponPanel, Continued

 public void fill_coupon_list(Uframe frm, Uresult res) {

 super.fill_coupon_list(frm, res);

 if (coupons == null) {

 return;

 }

 Ucoupon coupon = new Ucoupon("DrillCoupon");

 coupon.setjob(make_coupon_job(frm));

 coupons.add(coupon);

 }

 /**

 * Create a job for the DrillCoupon.

 * The job contains one drillLayer.

 */

 public Ujob make_coupon_job(Uframe frm) {

 // Create a drill layer.

 Udrilayer couponLayer = (Udrilayer)Udrilayer.cO.create();

 if (couponLayer == null) {

 return null;

 }

 // Create a job.

 Ujob couponJob = Ujob.cO.create();

 if (couponJob == null) {

 return null;

 }

 couponLayer.setactive(true);

 // For each of the drill layers in the job to panelize,

 // add the drill apertures to the couponLayer.

 Ujob job;

 Udrilayer lay;

Continued on next page

The code
(continued)

 81

Exercise: DrillCouponPanel, Continued

 for (int i = 1; i <= jobs.count(); ++i) {

 job = (Ujob)jobs.get(i);

 for (int j = 1; j <= job.numlayers("drill"); ++j) {

 lay = (Udrilayer)job.getlayer("drill", "", j);

 add_drills(lay, couponLayer);

 }

 }

 // Flash each of the drill apertures once.

 Uape ape = couponLayer.firstape();

 double pos = 0;

 for (int i = 1; i <= couponLayer.numapes(); ++i) {

 ape.flash(0, pos);

 pos += 100*Ucamv6._PCT_mil();

 ape = ape.next();

 }

 // Add the resulting layer to the job.

 couponJob.addlayer(couponLayer);

 return couponJob;

 }

 /**

 * Look for all the flashed circular apertures in the layer

 * and add them to the couponLayer.

 */

 public void add_drills(Udrilayer lay, Udrilayer

 couponLayer) {

 Uape ape = lay.firstape();

 Uape cirApe;

Continued on next page

The code
(continued)

 82

Exercise: DrillCouponPanel, Continued

 for (int i = 1; i <= lay.numapes(); ++i) {

 if (ape.is_it("cir") && !ape.reverse() &&

 (ape.numobj("f") != 0)) {

 cirApe = couponLayer.apesearch(ape, "");

 if (cirApe == null) {

 cirApe = ape.copydef();

 couponLayer.addape(cirApe);

 }

 }

 ape = ape.next();

 }

 }

}

Store the file as sources/com/company/ucam/panels/DrillCouponPanel in the
HOME directory.

/*

 * UcamPanels.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Allows to locate the custom panel classes.

import com.company.ucam.panels.*;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

/**

 * Class where Ucam looks for panel initialization methods.

 */

Continued on next page

The code
(continued)

 83

Exercise: DrillCouponPanel, Continued

public class UcamPanels {

 // Method called for the DrillCouponPanel module.

 public static void DrillCouponPanel_init() {

 Ucamv6.u$panel = new DrillCouponPanel();

 ((Upanel.CO)Ucamv6.u$panel).run("DrillCouponPanel");

 }

}

Store the file as sources/UcamPanels in the HOME directory.

In ucam.db set the upanel.subfiles entry to DrillCouponPanel.

From the HOME directory, run the Java compiler.

 For Linux:

javac –d $HOME –classpath
$HOME:$ETSCAM_INSTALL/ucam/classes/ucam.jar
sources/com/company/ucam/panels/DrillCouponPanel.java
sources/UcamPanels.java

 For Windows:

javac –d %HOME% –classpath
%HOME%;%ETSCAM_INSTALL%\ucam\classes\ucam.jar
sources\com\company\ucam\panels\DrillCouponPanel.java
sources\UcamPanels.java

The classes com/company/ucam/panels/DrillCouponPanel.class and
UcamPanels.class are now created in the HOME directory.

Start UCAM.

Open the cad job.

Create a Frame set with the panel1 and panel2 jobs.

Create an empty Coupon set.

A DrillCouponPanel item was added to the Panel cascade.

Continued on next page

The code
(continued)

Modify the
upanel.subfiles
entry

Compile the
code

Run the
application

 84

Exercise: DrillCouponPanel, Continued

Select the DrillCouponPanel item.

Create a panel using the Frame set.

In the lower left corner of the resulting panelized job, a row of circular flashes has
been added.

Run the
application
(continued)

 85

Chapter 6 – Standalone UCAM modules

Overview

UCAM has great functionality accessible from within the UCAM user interface. In
some cases it is desirable to use the UCAM functionality without the need for the
interface. This chapter shows how to do this.

NOTE: This functionality will only be available from UCAM v6.1-3 on.

This chapter contains the following topics.

Topic See Page

The UCAM setup method 86

Exercise: JobInfo 87

Introduction

Contents

 86

The UCAM setup method

When starting UCAM, a number of steps are performed to initialize and load the
necessary libraries (both Java and native). This setup step can be called using the
Ucam.setup() method. This is a class method, which can be called upon the Ucam
class.

Description

 87

Exercise: JobInfo

Write an application, which allows the user to open a job file and displays the
information in a window.

/*

 * JobInfo.java

 *

 * Copyright (c) 2016 Ucamco NV All rights reserved.

 */

// Defines the package this class resides in.

// This should be the first line of code in the source file.

package com.company.ucam.jobinfo;

// Standard Ucam packages.

import com.barco.ets.ucam.dtl.*;

import com.barco.ets.ucam.ui.*;

import com.barco.ets.ucam.hypertool.*;

// Additional packages needed.

import javax.swing.*;

import java.awt.event.*;

import java.io.*;

/**

 * Implements a window with a menubar and an area to display

 * the job information.

 */

public class JobInfo extends JFrame {

 // The info area.

 JTextArea textArea;

Continued on next page

Task

The code

 88

Exercise: JobInfo, Continued

 // The fileChooser for the open and save buttons.

 JFileChooser fileChooser;

 /**

 * Starts up the application.

 */

 public static void main(String[] args) {

 UcamMain.setup();

 Ucamapp.cO.ucamdb();

 Ucamapp.cO.initNoGUI();

 // Create a new window and display it.

 new JobInfo().setVisible(true);

 }

 /**

 * Constructs a new frame and creates the user interface.

 */

 public JobInfo() {

 // Create a window with title 'JobInfo'.

 super("JobInfo");

 // Make sure the application stops when the user closes

 // the window.

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 });

 // Create a menubar with a 'File' menu.

 // The file menu has 3 items :

 // - Open

 // - Save

 // - Quit

Continued on next page

The code
(continued)

 89

Exercise: JobInfo, Continued

 JMenuBar menuBar = new JMenuBar();

 JMenu fileMenu = new JMenu("File");

 JMenuItem item = new JMenuItem("Open");

 item.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 openJob();

 }

 });

 fileMenu.add(item);

 item = new JMenuItem("Save");

 item.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 saveText();

 }

 });

 fileMenu.add(item);

 fileMenu.addSeparator();

 item = new JMenuItem("Quit");

 item.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 System.exit(0);

 }

 });

 fileMenu.add(item);

 menuBar.add(fileMenu);

 setJMenuBar(menuBar);

Continued on next page

The code
(continued)

 90

Exercise: JobInfo, Continued

 // Create the info area.

 textArea = new JTextArea(15, 80);

 textArea.setEditable(false);

 // Add the info area through a scrollpane to the window.

 getContentPane().add(new JScrollPane(textArea));

 // Initialize the filechooser.

 fileChooser = new JFileChooser();

 pack();

 }

 /**

 * Asks the user to select a job, opens it and displays the

 * information.

 *

 * Called when the 'Open' item is selected.

 */

 private void openJob() {

 // Check if a file was selected.

 if (fileChooser.showOpenDialog(this) ==

 JFileChooser.APPROVE_OPTION) {

 String fileName = null;

 try {

 fileName = fileChooser.getSelectedFile()

 .getCanonicalPath();

 } catch (Exception e) {

 return;

 }

Continued on next page

The code
(continued)

 91

Exercise: JobInfo, Continued

 // Read in the job.

 Ujob job = Ujob.cO.read(fileName);

 if (job == null) {

 System.out.println("Invalid job file");

 return;

 }

 // Get information regarding the job.

 textArea.setText("Job name : " + job.name() + "\n");

 textArea.append("Customer : " + job.customer() + "\n");

 int numLayers = job.numlayers();

 textArea.append("Number of layers : " + numLayers +

 "\n\n");

 Ucamobj layer;

 // Get information for each layer.

 for (int i = 1; i <= numLayers; ++i) {

 layer = job.getlayer("all", "", i);

 textArea.append("Layer " + i + " : " + layer.name() +

 "\n");

 textArea.append("File specification : " +

 layer.spec() + "\n");

 textArea.append("\n");

 }

 }

 }

Continued on next page

The code
(continued)

 92

Exercise: JobInfo, Continued

 /**

 * Asks the user for a file to save the job information to.

 *

 * Called when the 'Save' item is selected.

 */

 private void saveText() {

 if (fileChooser.showSaveDialog(this) ==

 JFileChooser.APPROVE_OPTION) {

 File file = fileChooser.getSelectedFile();

 file.getParentFile().mkdirs();

 try {

 PrintWriter pw = new PrintWriter(new

 BufferedWriter(new FileWriter(file)));

 pw.print(textArea.getText());

 pw.close();

 } catch (IOException e) {

 }

 }

 }

}

Store the file as com/company/ucam/jobinfo/JobInfo.java in the HOME directory.

From the HOME directory, run the Java compiler.

 For Linux:

javac –d $HOME –classpath
$HOME:$ETSCAM_INSTALL/ucam/classes/ucam.jar
sources/com/company/ucam/jobinfo/JobInfo.java

 For Windows:

javac –d %HOME% –classpath
%HOME%;%ETSCAM_INSTALL%\ucam\classes\ucam.jar
sources\com\company\ucam\jobinfo\JobInfo.java

The class com/company/ucam/jobinfo/JobInfol.class is now created in the HOME
directory.

The code
(continued)

Compile the
code

 93

To start up the application a number of environment variables need to be set up
correctly. This is done in the Ucam start up script (ucam for Unix platforms,
ucam.bat for Windows systems).

Make a copy of the ucam start up script. In the line where java is called, replace
Ucam with com.company.ucam.jobinfo.JobInfo.

Run the new script.

A window appears:

Select the Open item from the File menu.

Select a .job file, information regarding the selected job appears in the window.

Select the Save item from the File menu.

Select a file to store the information in.

Run the
application

