

Integr8tor v8.2

Ucamco CONFIDENTIAL

Integrotor Version 8.2

We are pleased to announce the release of version 8.2 of Integr8tor.

Integr8tor v8.2 offers significant improvements, better quality and a number of bug fixes, as well as expanded functionality, as explained in these release notes.

We recommend that you install version 8.2 as soon as possible.

Overview

New Functionality and Enhancements

Input & Workflow

- Detection and flagging of duplicate input archives
- Support for password-encrypted archives
- Improved visualization of drawing input files
- Automatic processing of only the most recent ODB dataset where an archive contains multiple such datasets
- Better automatic stackup recognition
- Better registration after stackup changes
- Elimination of false errors in net compare
- Improved polarity recognition

Overview

New Functionality and Enhancements

QED

- Summary section split into separate blocks
- Edge connector recognition plus area computation
- Improved SMD pad reporting
- BGA pad recognition
- New rule check of (non-)centered tracks flanked by BGA pads
- Extended Polar information

Release history

Ucamco

Commitment on regular updates

Integr8to Jun 2010	or v5.1 Integr8tor v5.2 Nov 2010 Integr8tor v6.1 Oct 201	tor v6.2 11 Integr8tor v7.1.3 Jul 2012 Integr8tor v8.1 May 2013 Integr8tor v8.2
2010	Mar 2011	2012 2013 November 2013
Version	Release date	Highlights
5.1	July 2010	 Multiple job submit via email. CAM input report.
5.2	November 2010	 Copper clearances by type. Scoring calculation.
6.1	March 2011	 Perspectives in Cockpit. Improved performance.
6.2	November 2011	 Multiple QED reports. Exposed copper calculation.
7.1	June 2012	 Localized interface. Line width on planes.
7.1.3 maintenance release	July 2012	Bug fix release for recovered job.
8.1	May 2013	 Support for ODB++ v7 Compatible with Windows server 2012 and windows 8
8.2	November 2013	See release notes
	» We try har	der « www.ucamo

Detection and flagging of duplicate input archives

Features

- An extra column in the Job Queue indicates a duplicate input archive for this entry
- The current job's ID is shown along with the IDs of corresponding duplicate jobs
- When sorting using the Duplicates column, duplicate jobs are displayed in separate rows for clarity.

Benefits

- Clear information about duplicates in the job queue.
- Eliminates unnecessary extra work wherever an archive has already been processed.

JOB	QUEUE [/	4831] 🗵	JOB EDITO	R: [No Job Loaded]					
	G	L.	Ę	🛃 🛛 move jo	b 🔻 🕒	Ť	_	_	_
REF	RESH	SUBMIT	JOB MODIFY	JOB RESUBMIT JOB MOVE J	OB ABORT JOB D	DELETE JOB			
LOCK	ID		HANDLER	LOCATION	PROGRESS		DUPLICATES	PRIO	SUBMIT TIME
	4897			Edit in Cockpit	Review		4897, 4898 🔻	5	2013-10-24 2
	4898			Edit in Cockpit	Review		4897, 4898	5	2013-10-24 2
	4891			QED Check Todo's	Review		4891, 4892	5	2013-10-17 2
	4892			QED Check Todo's	Review		4891, 4892	5	2013-10-17 2
	4860			QED No Image Data	Review		4860, 4861	5	2013-10-08 2
	4861			QED No Image Data	Review		4860, 4861	5	2013-10-08 2
	4858			QED Check Todo's	Review		4858, 4878	5	2013-10-07 2
	4878			QED Check Todo's	Review		4858, 4878	5	2013-10-15 2
	4838			Edit in Cockpit	Review		4838, 4839	5	2013-09-27 2
-		_							11111

Support for password encrypted archives

Features

- Option to define the password for encrypted archives using:
 - Submit and resubmit functions in the the Cockpit.
 - Email , with a new Email Code.
 - Web Integr8tion.

Benefits

- Encrypted archives need not be unpacked and repacked before they are sent to Integr8tor.
- Original archives can be maintained

Parameter Password . Code pw: Save Cancel	Email Codes	
Code pw: Save Cancel	Parameter	Password 🔹
Save Cancel	Code	pw:
		Save Cancel

Submit new job								
Data file(s)	job14233-rev1.2.rar Browse							
Priority:	3 (Normal) 🛛 🔤							
Tooltable:	none 🛛 🔹							
Polar Job:	-							
Pref. Import Format:	· ·							
Password:								

Using CAD converter for drawing input files

Features

- Integr8tor has been extended with a powerful CAD convertor which can currently handle the following popular drawing formats:
 - DXF
 - DWG
 - HPGL
- These files are converted and stored as
 PDF files inside the data structure.

Benefits

- No other software is needed for reading in mechanical drawing files.
- All drawings are converted to

exchangeable color PDF files.

FILE LIST 🛛 INPUT REMARKS [0] TODO'S		AL REMARKS [0]		тор вотто	M LAYER IM	AGE drawing2.dwg 🛛	INPUT
ACCEPT ALL CONTINUE TO UCAM CHECKPOINT OF 16.circuit.rar [17]	рвоит odbin	EDIT QED					
INITIAL	FORMAT	FUNCTION	PO 🗖		2	<u>13</u> 1	
TOP.art	ger274x	outer					
IS2.art	ger274x	inner		^			
IS3.art	ger274x	inner				10.00 bed board mati(on top alde 4 place	
IS4.art	ger274x	inner					
IS5.art	ger274x	inner			• [{* · · ·		<u> </u>
IS6.art	ger274x	inner			<mark> = =</mark>	н Ү	Н
IS7.art	ger274x	inner				.Ħ. H	.∏.
BOTTOM.art	ger274x	outer					{}
SMBOT.art	ger274x	soldermask				11 - 11	
SSBOT.art	ger274x	legend				A. P.	. 🛛
SPBOT.art	ger274x	paste				11 11	
1-2.drl	excellon2	drill			 	U	Ϋ́
1-8.drl	excellon2	drill		с		<u>╷╷</u> ┦╷╷╻╱╨ _┲	÷÷Ľ
2-7.drl	excellon2	drill					
7-8.drl	excellon2	drill					
drill.art	ger274x	drillmap					
drawing1.dwg	extern	document					
drawing1.dxf	extern	document					
drawing2.dwg	extern	document		P			
drawing2.dxf	extern	document					
				83.54 x 58.64 in	<		>

» We try harder «

www.ucamco.com

New Input enhancements

Automatic processing of most recent ODB data set

Where an archive has been submitted that contains multiple ODB data sets, Integr8tor automatically processes only the most recent data set and ignores the others.

FILE LIST

Information is stored in the Cockpit's "Input remark" section and in the QED report.

If the Layer Count input property is added when submitting a job, this can be used to aid automatic stackup recognition

INPUT REMARKS [5] 🗵

TODO'S [0]

ading with preferred ODB input dataset among mixed ODB and GERBER formats

Multiple ODB input datasets found among mixed ODB and GERBER formats (Considering most recent ODB data set)

CRITICAL REMARKS [0]

Workflow Enhancements

Integr8tor's workflow and engine have been improved, enhancing QED reporting accuracy and JOB output.

Reregistering after optional layer stackup changes

• If stackup is changed using the Cockpit editor or Ucam, registration is re-evaluated for all layers.

No more false net errors in Net Compare

• Net Compare now ignores special nets such as ODB++ \$NONE\$ nets, so false opens are no longer reported in the QED

Improved Polarity recognition

New rules ensure even better layer polarity recognition

Improved SMD pad recognition

Paste layers are now taken into account resulting in better SMD pad recognition

Split summary section

The summary section on the QED report has been split into 4 separate blocks.

This gives the user greater freedom to change the layout of the QED report.

Available blocks:

- Summary General
- Summary Copper Layers
- Summary Sequences
- Summary Rout

Language:	English •	
Append Layer Images		
Repeat Header on Every Page:		
Sections:	Visible	
	Summary - General	
	Summary - Copper Layers	
	Summary - Sequences	
	Summary - Rout	•

<u>» W</u>e try harder «

Edge connector recognition plus area computation

- Integr8tor can now detect the presence of edge connectors. Next to this, the area of both top and bottom connector will be calculated.
- In the copper Area section, there is a new "Edge Connectors" column for the corresponding area values.
- The existence of Edge Connectors is now indicated in the Summary section

Copper Areas					
Side	Total	Free Of Solder Mask	Free Of Gold Mask	Free Of Silver Mask	Edge Connectors
	dm ²	dm ²	dm ²	dm ²	dm ²
Top (including barrels)	2.4380	0.9693			0.0135
Bottom (including barrels)	2.2441	0.8810			0.0135
Total (including barrels)	4.6821	1.8503			0.0269

www.ucamco.com

Extended Polar information

Integr8tor now converts even more elements from the Polar stackup to the qed.xml and ucam job file

Features

- The exported job file now contains many more attributes from the Polar job.
- Information such as base thickness, dielectric constant and others are stored in the XML file for later
- Unit dependent values are stored along with the unit used.
- Previously misinterpreted parameters are corrected and stored in qed.xml and jobfile.

Benefits

- Complete stackup information is stored in the job file
- All information is available in qed.xml
- No information is lost

» We try harder «

SMD - BGA extensions

In the a new section on the QED report, detailed information about SMDs shows:

- Total number of SMD Pads.
- Number of non BGA Pads.
- Number of BGA Pads.

SMD				
Side	Total SMD Pads	Non BGA Pads	BGA Pads	All Tracks in BGA Centered
Тор	5081	2400	2681	No
Bottom	2768	2768	0	
All	7849	5168	2681	No

• Indication whether tracks between BGA pads are centered or not.

Ucamco

QED sample report

Page 2

Integr8tor v8.2.1-131108

Integr8tor v8.2.1-131108

Integr8tor v8.2.1-13110

Page 1

Page 3

Integr8tor

QED sample report

		porc												
QED Report	Integr8tor	QED Report		In	tegr8tor	OED	Rep	ort				Inte	gr81	or
F → 12 3 Nm → 12 3 Nm Mn. Line Width Inner Layers 0.080 mm		Copper Layers File Pos. Min. Line Min. Rin mm mm mm art01_pho 1 0.080 0.09 art02_pho 2 0.080 0.09 art03_pho 3 0.17 art04_pho 4 0.080 0.17 art05_pho 5 0.100 0.77 art06_pho 6 0.080 0.17 art05_pho 6 0.080 0.17 art06_pho 6 0.080 0.17 art06_pho 8 0.080 0.17	Min. Cir. Copper Min. Cir. Pad Min.	In. Cir. rack to spacing Min. Self. to PTH Min. Cir. to PTH Min. to Ni to Ni nmm mm mm mm 0.097 0.000 0.196 0 0.099 0.000 0.197 0 0.090 0.000 0.271 0 0.113 0.018 0.275 0 0.199 0.002 0.271 0 0.119 0.025 0.272 0 0.101 0.003 0.271 0	Cr. bo Min. Cr. bo Copper Area mm mm duffie % 0.0100 0.500 0.4824 41 1.675 0.525 0.2581 22 1.649 0.500 1.0056 85 1.680 0.510 0.1713 14 .339 0.500 0.9771 82 .339 0.600 0.97778 82 1.625 0.510 0.1689 14	Dril Tods File dt11-2_dt1 dt15-16_dt1 dt12-15_dt1 dt1_dk_dt1 dt1_dk_dt1 dt1_ndk_dt1 dt1_ndk_dt1 dt1_ndk_dt1	Tool 5 Nr. 1 1 1 1 2 2 1 2 3	Span Type 1-2bind 15-16bind 2-15buried 1-16PTH 1-16PTH 1-16PTH 1-16PTH 1-16PTH 1-16PTH 1-16PTH	End Dia. Hol P mm 0.100 0.200 0.200 1.100 0.900 1.600 1.800	es (in Moves (in PCB) 3025 (1) 1242 (1) 1365 (1) 3 (1) 2 (1) 2 (1) 1 (1)	Double Pre- Hits (in Hits File) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	drill Min. Ring on Outer 0 0.098 0 0.099 0 0.099 0 0.198 0 0.300 0 0.000 0 0.000	Min. Ring on Inner I mm 0.098 0.099 0.172 0.198 0.300 0.300 1	fin, Pad Size 0.296 0.298 0.544 0.596 1.700
Image: State of the state		art09_pho 9 0.080 0.17 art10_pho 10 0.17 art11_pho 11 0.080 0.17 art12_pho 12 0.17 art13_pho 12 0.17 art13_pho 13 0.080 0.17 art14_pho 14 0.17 art15_pho 15 0.080 0.09 art16_pho 16 0.080 0.09	3 0.100 0.100 0.100 4 0.097 > 0.500 0.097 3 0.100 0.100 0.102 5 0.300 > 0.500 > 0.500 4 0.096 0.100 0.096 4 0.096 0.100 0.096 4 0.096 0.100 0.098 9 0.098 0.100 0.097	0.100 0.021 0.275 0 0.098 0.003 0.271 0 0.100 0.024 0.275 0 0.300 0.003 0.271 0 0.100 0.024 0.275 0 0.300 0.003 0.271 0 0.100 0.026 0.272 0 > 0.500 0.003 0.271 0 0.099 0.003 0.271 0 0.099 0.003 0.199 0 0.098 0.002 0.197 0	1710 0.510 0.1526 13 1299 0.600 1.0055 85 1310 0.510 0.1524 13 1299 0.600 0.9729 82 1310 0.510 0.2233 19 1649 0.600 1.0017 84 1870 0.500 0.1901 16 1870 0.700 0.2840 24	dri_nds_dri dri_nds_dri dri_nds_dri Sequences Span 1-16 I	3 4 5 Type T 27TH	1-16/PTH 1-16/PTH 1-16/PTH 1-16/PTH 0.200 0.200	1.000 2.700 4.400 4.400 Max. End Dia. H 1 mm 1.100 1.100	3 () 5 () oles Min. Ring on Outer 1368 0.196	Min. Ring on Inner mm 0. 198	CIr. Min. CIr. Hole to Hole to Hole Within Sequence mm mm 0.275 0.460	Min. Clr. Hole to Hole, Between Sequences mm 0.402	Vin. Clr. Hole to Outline mm 0.900
0.055 mm 1mm 0.157 mm 0.157 mm	2m	Side Total SMD Pa Top Bottom All Solder Mask Side Top Top I Solder Mask	lds Non BGA Pads 3449 2793 2437 1783 5886 4574 Min. Ring Min. Clr. Ma mm 0.005	BGA Pads All 656 656 1312 1312 sk to Mask Min. Web mm 1 0.121 0.1	I Tracks in BGA Centered Yes Yes Min. Cir. Mask to Copper mm mm 035 0.017	1-2 15-16 2-15 All 1-16 All Rout Tools	Sind Suried Plated NPTH NI File	1 0.100 1 0.200 5 0.100 5 0.900 10 0.100 Tool Nr.	0.100 0.100 0.200 1.100 0.4.400 0.4.400 Type	3025 0.099 1242 0.099 2119 7754 0.099 13 7767 0.099 Tool Dia.	0.098 0.099 0.172 0.098 0.098 End Dia.	0.196 0.300 0.197 0.220 0.271 0.450 0.196 0.220 0.196 0.220 0.196 0.220 v Draw Length n	0.402 > 0.800 0.402 Nibble	1. 165 0.875 0.700 0.700 1.800 0.700 Count
Cir. to NP TH Inner Layers 0.299 mm2mn0.500 mm	200	Bottom	0.015	0.035 0.1	035 0.028	Routed Holes	File	Hole Nr.	Instances	X Size	Y Size	Draw Length	Nibble nm	Count

Ucamco

Page 4

Page 5

Integr8tor v8.2.1-131108

Page 6

» We try harder «

Integr8tor v8.2.1-131108

QED sample report

Page 7

OED Rep	ort			Integr8tor						
					2.5					
Scoring - Minimum Clearance	e									
File	Pos.	Min. Clr. to Score Top	Min. Clr. to Score Right	Min. Clr. to Score Bottom	Min. Clr. to Score Left					
		mm	mm	mm	mn					
art01_pho	1	0.800	> 1.600	0.500	> 1.60					
art02_pho	2	0.800	> 1.600	0.525	> 1.60					
art03_pho	3	0.500	0.500	0.500	0.500					
art04_pho	4	0.800	> 1.600	0.510	> 1.600					
art05_pho	5	0.500	0.500	0.500	0.500					
art06_pho	6	0.800	> 1.600	0.525	0.635					
art07_pho	7	0.600	0.600	0.600	0.600					
art08_pho	8	0.800	> 1.600	0.510	> 1.600					
art09_pho	9	0.800	> 1.600	0.510	> 1.60					
art10_pho	10	0.600	0.600	0.600	0.60					
art11_pho	11	0.800	> 1.600	0.510	> 1.60					
art12_pho	12	0.600	0.600	0.600	0.60					
art13_pho	13	0.800	> 1.600	0.510	> 1.600					
art14_pho	14	0.600	0.600	0.600	0.600					
art15_pho	15	0.800	> 1.600	0.500	> 1.60					
art16_pho	16	0.800	> 1.600	0.700	> 1.60					
Scoring - Routing										
Side		Lines	Min. Clearance	Saved Routing	Remaining Routing					
			mm	mm	mn					
Horizontal Score Lines										
Тор		1	0.500	> 1.600						
Mid		0								
Bottom		1	0.500	> 1.600						
Vertical Score Lines										
Left		1	0.500	> 1.600						
Mid		0								
Right		1	0.500	> 1.600						
All Score Lines										
		4	0.500	440,000	0.00					

_	-						-
			•			-1	
-	-	/ 1 1	-	• •	•		

quences Analysis										
File	Pos.	Stacked Vias	Overlap ped Vias	Min. Clr. Via Plug	Top Tool			Bottom Tool		
					Drill File	Tool Nr.	End Dia.	Drill File	Tool Nr.	End Dia.
				mm			mm			mm
t02_pho	2	no	0	0.154	drl2-15_drl	1	0.200	dri 1-2_dri	1	0.100
t15_pho	15	no	0	0.240	dri 15-16_dri	1	0.100	dri2-15_dri	1	0.200
β (Single)										
PCB Size		0	utline Leng	gth						
mm x	mm			mm						_
125.000 x 95	5.000			440.000						
stomer Panel (Delivery Array, Shipping Panel)										

Original Image	Panel Size	PCB's	X Spacing	Y Spacing	Left Border	Right Border	Top Border	Bottom Border
	mm x mm		mm	mm	mm	mm	mm	mm

Page 8

Integr8tor v8.2.1-131108

Integr8tor v8.2.1-131108

Integr8tor v8.2.1-131108

Page 9

Integr8tor

© Copyright Ucamco NV, Gent, Belgium

All rights reserved. This material, information and instructions for use contained herein are the property of Ucamco. The material, information and instructions are provided on an AS IS basis without warranty of any kind. There are no warranties granted or extended by this document. Furthermore Ucamco does not warrant, guarantee or make any representations regarding the use, or the results of the use of the software or the information contained herein. Ucamco shall not be liable for any direct, indirect, consequential or incidental damages arising out of the use or inability to use the software or the information contained herein.

- The information contained herein is subject to change without prior notice. Revisions may be issued from time to time to advise of such changes and/or additions.
- No part of this document may be reproduced, stored in a data base or retrieval system, or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from Ucamco.

This document supersedes all previous versions.

All product names cited are trademarks or registered trademarks of their respective owners.

