
A proposal to extend the Gerber format with nested blocks.

Journal of the HKPCA / 2016 / Summer / Issue No. 60

Technical Paper18

By Karel Tavernier and Rik Breemeersch

1. Preface

Ucamco proposes extending the Gerber format to make it more

efficient in handling fabrication and assembly panels. The

proposed new features will no doubt have other applications.

Printed circuit boards are fabricated in panels. The PCB is

repeated a number of times on a production panel. The image

file representing a panel must represent all instances of the

PCB. One way to represent the PCB instances is with a

so-called 'flat' file: the objects representing the PCB are simply

copied n times in the file, each time at the appropriate place.

While this defines the correct image it blows up the file size and

slows down processing the image in CAM and on the

production equipment. A more efficient way is to store the PCB

objects only once, and add an instruction to step and repeat

the PCB over the image. The current SR command in Gerber

exactly does that.

However, the assemblers, where the bare boards are populated

with components, more and more works in panels themselves,

often called an 'array', 'biscuit' or 'assembly panel'. The PCB

fabricator then ships to the assembler, .

What he repeats in his bare-board production panel are the

arrays. The efficient way to represent this image is by a nested

step and repeat: the single PCB is stepped into an array, and

the array is stepped into the production panel. With a nested

step and repeat the PCB data is only once in a file. The

problem with the SR in Gerber is that it supports only one level,

no nesting. Thus one has to flatten either the array or the

working panel. The resulting big files can become a problem

when a small but complex piece of electronics such as a

smartphone is fabricated.

To address this issue Ucamco will extend the Gerber language

with nested step and repeat. Tests performed together with Via

Mechanics in Japan indeed demonstrated dramatic productivity

increases. To introduce this new feature in an easier and safer

way Ucamco suggest not extend the capability of the existing

arrays not single PCBs

(The goal is more efficient panel definitions. Rev 11, 2016.05)

SR command but to introduce new command, mainly AB. The

reason is that legacy Gerber readers that do not yet support

nested step and repeat, might overlook subtle changes in the

SR command and produce the wrong image, without warning.

A new command is safer. Indeed, the conformance section in

the Gerber format specification states: "To prepare for future

extensions of the format, Gerber file readers must give a

warning when encountering an unknown command...". When

testing a file with the new command on the well-respected

GC-Prevue Gerber viewer an error message duly appeared.

Another issue is that the step and repeat only allows a regular

array. To allow more general repeats Ucamco introduces block

aperture that that can be flashed in any location and orientation.

The new AB command creates a block aperture. The now

aperture options set by LM, LR and LS allow to

mirror/rotate/scale the block apertures, and all other apertures

for that matter.

The new Part attributes value defines unequivocally whether we

deal with a single PCB, an array or a fabrication panel.

Nested step and repeat and block apertures will make Gerber

more efficient with panelized data. Furthermore, the block

aperture is a powerful general construct with no doubt many

other applications. Together, they are a powerful extension of

the Gerber format.

Ucamco publishes a draft specification and sample file on its

website to allow the Gerber user community to review and

comment on the new feature before it is cast in concrete.

P l e a s e s e n d y o u r c o m m e n t s a n d c r i t i c i s m t o

gerber@ucamco.com.

Karel Tavernier,

Managing Director,

Ucamco

www.hkpca.org

Technical Paper 19

3. SR - Simple Step and Repeat

The SR block allows a array of blocks to be generated. SR

blocks cannot contain other SR or AB blocks and are

generated using the SR command.

The syntax for the SR command is:

A new SR command closes the current SR command. Used

without any parameters (or with both repeats equal to 1 it

simply closes the opening SR command. Used with a

specification of a number of repeats and step distance it ends

the current SR command and immediately starts a new one. In

other words an SR command always terminates the current SR

block.

An opened SR block must be closed before the end-of-file

command (M02) is encountered.

The number of repeats and the steps can be different in X and

Y. The number of repeats along an axis can be 1, which is

equivalent to no repeat. If the repeat number is 1 it is

recommended to set its step value to 0.

The SR commands step-repeats (copies) blocks in the image

plane when closed according to the parameters in the opening

SR command. Each copy of the block contains identical

graphics object. Blocks are copied first in the Y and then in the

X direction.

<SR command> = SR[X<Repeats>Y<Repeats>I<Step>J

<Step>]*

X1

Syntax Comments

X<Repeats> <Repeats> defines the number of times the block is

repeated along the X axis. It is an integer 1.

Y<Repeats> <Repeats> defines the number of times the block is

repeated along the Y axis. It is an integer 1.

I<Step> <Step> defines the step distance along the X axis. It

is a decimal number 0, expressed in the unit set

by the MO command.

J<Step> <Step> defines the step distance along the Y axis. It

is a decimal number 0, expressed in the unit set

by the MO command.

2. Blocks Overview

A is a sub-stream of graphics objects that can be can be

added to the graphics objects stream. Blocks can be mirrored,

rotated, scaled, shifted and polarity toggled when adding them

to the stream. By using blocks sub-images occurring multiple

times must only defined once, thus slashing file size and

boosting image processing speed. The information that these

sub-images are identical is preserved.

Note that a block is a macro of commands called

repeatedly in the command stream. The command stream is

processed sequentially, without procedure or macro calls.

Gerber is not a programming language. The commands

defining the block are processed once, creating the blocks

which later commands can append to the object stream.

Blocks can contain objects with different polarities (LPD and

LPC). Blocks can overlap.

Once a block is added to the graphics objects stream its

objects becomes part of the overall stream. The effect of the

objects does not depend on whether they were part of a block

or not. Only their order is important. A clear object in a block

clears objects beneath it, including objects contained in

the block.

There are two commands dedicated to blocks: SR and AB.

They open and close block statements, a sequence of

commands that define blocks. A block statement can contain

other block statements.

It is recommended to avoid overlapping blocks

containing both clear and dark polarity objects. The order in

which they are added to the object stream may affect the final

image. The order is always correctly implemented in Gerber

readers. When all objects in block are dark or the blocks do not

overlap the order does not affect the image. This is safe to use.

block

not

all not

Warning:

Journal of the HKPCA / 2016 / Summer / Issue No. 60

Technical Paper20

1.1. Examples

4.1 Overview of block apertures

%SRX3Y2I5.0J4.0*%

...

%SR*%

Step and Repeat (SR blocks)

block apertures

Other examples:

The AB command creates . The command

stream between the opening and closing AB command defines

a block aperture which is then stored in the aperture dictionary.

Thus the AB commands add an aperture to the dictionary

without needing a D-code as for a standard or macro aperture.

The effect of block apertures is governed by the LM, LR, LS

and LP commands as any other aperture. When a block

aperture is flashed the transformed - mirrored, rotated and

scaled - objects are added to the graphics object stream.

4. Block apertures

While a standard or macro aperture always adds a

graphics object to the stream, a block aperture can add

of objects, with different polarities. A block aperture is

not a single graphics object but a set of objects. Standard and

macro apertures always have a single polarity while block

apertures can contain both dark and clear parts.

Do not use blocks - or macros - when a standard aperture is

available. Standard apertures are built-in and therefore are

processed faster.

AB statements can contain other AB or SR statements. See 5.

The first purpose of block apertures is to repeat a sub-image

without copying the generating commands. It is a much more

powerful concept than the SR command. The SR only allows

repeats on a regular grid without mirror, rotate or scale, without

nesting. Aperture blocks can be repeated at location and

mirrored, rotated and scaled. In PCB fabrication

blocks are used to create panels without duplicating the data.

Clear (LPC) objects are used to mask out underlying copper

balancing patterns in the panel.

The second purpose of block apertures is to complement

macro apertures. Blocks are simpler to create. However,

macros but macros can have parameters and blocks cannot.

Macro outline primitives support linear segments only while

blocks can contain contours with both linear and circular

segments. A block aperture consisting of a single region

creates a single object with one polarity - as with standard or

macro apertures. Thus single object apertures of any shape can

easily be created. In PCB design to fabrication data transfer

block apertures can define pads. Such block apertures ideally

consist of a single object (region). However, multi-object single

polarity blocks can have a use. Pads are sometimes painted or

stroked; such jobs are very hard to handle in CAM as pad

locations must be reverse-engineered. Defining a block

aperture with the painting of a single pad and then flashing it as

the pad locations is a big step forward as the pad locations are

single

any

number

any

individually

Syntax Comments

%SRX2Y3I2.0J3.0*% Opens an SR block that is repeated 2 times

along the X axis and 3 times along the Y

axis. The step distance between X-axis

repeats is 2.0 units. The step distance

between Y-axis repeats is 3.0 units.

%SRX4Y1I5.0J0*% Opens an SR block that is repeated 4 times

along the X axis with the step distance of

5.0 units. The step distance in the J

modifier is ignored because no repeats

along the Y axis are specified.

%SRX1Y1I0J0*% Close the previously started SR block. If no

block is opened, this does nothing.

%SR Close the previously started SR block. If no

block is opened, this does nothing.

www.hkpca.org

Technical Paper 21

now clear. Such a usage may be an intermediate step towards

flashing pads with proper single object apertures.

The syntax for the AB command is:

As with any other aperture, the flash operation updates the

current point but otherwise leaves the graphics state

unmodified. (The graphics state is set to the value it had

after the block statement defining the block. A block is not a

macro command but simply a set of graphics objects.)

The section between the opening and closing AB commands

can contain nested AB commands. The resulting apertures are

stored in the library and are available subsequently over the file,

also outside the enclosing AB section.

If the polarity is clear (LPC) when the block aperture is flashed

the polarity of all objects in the block is toggled (clear becomes

dark, and dark becomes clear). This toggling proceeds through

all nesting levels. If the polarity is dark (LPD) then the block

aperture is inserted as is. In the following example the polarity

of objects in the flash of block D12 will be toggled.

4.2 AB - Aperture Block command

<AB command> = AB[block D-code]*

Examples:

not

4.3 Example

%ABD12*%

...

%AB*%

....

D12*

%LPC*%

X-2500000Y-1000000D03*

G04 Ucamco copyright*

%TF.GenerationSoftware,Ucamco,UcamX,2016.04-160425*%

%TF.CreationDate,2016-04-25T00:00;00+01:00*%

%FSLAX26Y26*%

%MOMM*%

%ADD10C,1*%

%LPD*%

%ABD12*%

%ADD11C,0.5*%

D10*

G1*

X-2500000Y-1000000D03*

Y1000000D03*

%LPC*%

D11*

X-2500000Y-1000000D03*

%LPD*%

X-500000Y-1000000D02*

X2500000D01*

G75*

G3*

X500000Y1000000I-2000000J0D01*

G74*

G1*

%AB*%

D12*

X0Y0D03*

%LMX*%

X10000000D03*

%LMY*%

%LR30.0*%

X0Y8000000D03*

%LMXY*%

%LR45.0*%

%LS0.8*%

X10000000D03*

M02*

Syntax Comments

%ABD12*% Opens of the definition of aperture D12

%AB*% Closes the current block aperture definition.

Syntax Comments

AB AB for Aperture Block

<template name> Name of the block aperture template. This

name must be unique and cannot be used

by another template.

Journal of the HKPCA / 2016 / Summer / Issue No. 60

Technical Paper22

5. Syntax of SR and AB nesting

6. D04 Command: Stepped Flash

We first informally define three variables:

Now we are ready to specify the block commands:

The D04 commands steps (copies) the current aperture in the image plane according to the parameters in the command.

The syntax for the D04 operation is the following:

D04 operation is not allowed in a region definition.

<single command> = all commands except the block commands SR and AB
<sr parameters> = X<Repeats>Y<Repeats>I<Step> J<Step>
<D-code> = D<integer = 10>

<AB open> = %AB<D-code>*%
<AB close> = %AB*%
<AB statement> = <AB open><section><AB close>

<SR set> = %SR<sr parameters>*%
<SR close> = %SR*%
<SR statement> = <SR set><section>{<SR set><section>}<SR close>

<block statement> = <AB statement>|<SR statement>

<section> = {<single command>}|{<single command>}<block statement>{<single command>}

<D04 operation> = [X<Number>][Y<Number>]M<Repeats>N<Repeats>I<Step>J<Step>D04*

Warning:

Example:

X12345Y67890M2N3I5000J4000D04*

Syntax Comments

X<Number> Coordinate data defining the X coordinate of the aperture origin of the first flash.

If missing then the previous X coordinate is used.

<Number> is a coordinate number - see section

Y<Number> Coordinate data defining the Y coordinate of the aperture origin of the first flash.

If missing then the previous Y coordinate is used.

<Number> is a coordinate number - see section

M<Repeats> <Repeats> defines the number of times the block is repeated along the X axis. It is an integer 1.

N<Repeats> <Repeats> defines the number of times the block is repeated along the Y axis. It is an integer 1.

I<Step> <Step> defines the step distance along the X axis. It is a decimal number 0, expressed in the unit set by the MO

command.

J<Step> <Step> defines the step distance along the Y axis. It is a decimal number 0, expressed in the unit set by the MO

command.

D04 Stepped flash operation code

www.hkpca.org

Technical Paper 23

Apertures are copied first in the Y and then in the X direction. The D04 is the shorthand for a number of successive D03's. After

the D04 command is finished the current point is set at the point of the last flash.

The number of repeats and the steps can be different in x and y. The number of repeats along an axis can be 1, which is

equivalent to no repeat. If the repeat number is 1 it is recommended to set its step value to 0.

The image below can be generated as follows:

Example 1: a schematic example

G04 Create Block 2, the basic building block, as ape 100

%ABD100*%

... Gerber commands generating the block 2 image, includes border

%AB*%

...

G04 Create an intermediate block as ape 101, a 2x2 repeat starting at the block origin

D100*

ABD101*%

X0Y0M2N2I1.5J1D04*%

%AB*%

...

G04 Create Block 2 as ape 102; a 2x2 repeat of 101 plus border, add border starting at the

origin to create a block 1, ape 102

ABD102*%

D101*

X0Y0M2N2I.5J3D04*%

... Gerber commands creating the border

%AB*%

...

G04 Repeat ape 102 2x3 times

D0102*

X0Y0M3N2I10.0J7.0D04*

Nested Step and Repeat: schematic example

Journal of the HKPCA / 2016 / Summer / Issue No. 60

Technical Paper24

The following code illustrates how blocks can be used in a real Gerber file:

Example 2: a Gerber file using D04

%FSLAX36Y36*% G04 Set precision and zero omission*

%MOMM*% G04 Set unit*

%ADD10C,7.500000*% G04 Define apertures*

%ADD11C,15*%

%ADD12R,20X10*%

%ADD13R,10X20*%

%LPD*% G04 Set layer polarity*

%ABD100*% G04 Define elementary block aperture 100

D10* G04 Select aperture 10*

X65532000Y17605375D02* G04 Move*

Y65865375D01* G04 Draw with aperture 10*

X-3556000D01* G04 Draw with aperture 10*

D11* G04 Select aperture 11

X-3556000Y17605375D03* G04 Flash with aperture 11 inside block 100*

%AB*% G04 Close definition of block aperture 100*

D13* G04 Select aperture 13*

X-30000000Y10000000D03* G04 Flash aperture 13 outside of blocks*

%ABD101%* G04 Define block 101, 2x2 flashes of 100

D100* G04 Select aperture 100

X-30000000Y10000000M2N2I100J70D04*% G04 Flash it 2x2 times

%AB*% G04 Close block 101*

%ABD102%* G04 Define block 102, 2x3 flashes of 101 and one of 12

D101* G04 Select aperture 101

X-30000000Y10000000M2N3I230J160D04* G04 Flash it 2x3 times

D12* G04 Select aperture 12

X19500000Y-10000000D03* G04 Flash aperture 12 inside the block definition*

%AB*% G04 Close definition of block aperture 102*

D102* G04 Select aperture 102

X-30000000Y10000000N32I500J520D04*% G04 Flash it 3x2 times

D13* G04 Select aperture 13

X143000000Y-30000000D03* G04 Flash aperture 13 outside the block repeats*

M02* G04 End of file

Nested blocks: real Gerber code

Graphics state parameter Value range Fixed or changeable Initial value

Unit parameters

Coordinate format

Unit

Drafting parameters

Current point

Interpolation mode

Quadrant mode

Aperture parameters

Current aperture

Current polarity

Current mirroring

Current rotation

Current scaling

Region parameter

Region mode

See FS command in xxx Fixed Undefined

Inch or mm - See MO command in xxx Fixed Undefined

Point in plane Changeable Undefined

Linear, clockwise circular, counterclockwise circular

See G01/G02/G03 commands in and xxx Changeable Undefined

Single-, multi-quadrant

See G74/G75 commands in xxx Changeable Undefined

See the AD command in xxx Changeable Undefined

See the LP command in xxx Changeable Dark

See LM command in xxx Changeable No mirror

See LR command in xxx Changeable No rotation

See LS command in xxx Changeable No scaling (=1.0)

On/Off - See G36, G37 commands in Changeable Off

www.hkpca.org

Technical Paper 25

7. Aperture State Parameters

7.1 Overview

The commands LP, LM, LR and LS load the aperture graphics

state parameters. These parameters transform the current

aperture as used in an operation command and take effect

immediately after they are loaded and remain in effect until a

new value is loaded. Selecting a new current aperture does not

reset these parameters, nor does any other command except

LP, LM, LR and LS.

The parameters do not change the aperture definition in the

aperture dictionary; in this sense they are volatile; when a new

current aperture is selected the original definition is taken, and

the current aperture states are applied.

An example D123 is a rectangle. It is first flashed in the original

orientation. Then an LR command sets the current rotation at

90 degrees and it is flashed again. Both flashes have D code

123 and inherit the attributes of D123 but have different

rotations. D123 remains unchanged. Attributes are attached to

the D code and are fixed for that D code. Aperture states are

attached to the current aperture and are volatile.

These transformations affect the apertures only, not the

coordinate data.

The defaults are defined in the graphics state table:

7.2 Load Polarity (LP)

The LP command sets the graphics state

parameter. This command can be used multiple times in a file.

The current polarity applies to all subsequent apertures used

until changed by another LP command.

Polarity can be either or . Its effect is explained in xxx.

Section xxx gives an example of its use.

current polarity

dark clear

The syntax for the LP command is:

<LP command> = LP(C|D)*

Syntax Comments

LP LP for Load Polarity

C|D C - clear polarity

D - dark polarity

Journal of the HKPCA / 2016 / Summer / Issue No. 60

Technical Paper26

7.3 Load Mirroring (LM)

<LM command> = LM(N|X|Y|XY)*

7.4 Load Rotation (LR)

<LR command> = LR<Rotation>*

The LM command sets the graphics state

parameter. This command can be used multiple times in a file.

The mirroring applies to all subsequent apertures used until

changed by another LM command.

The current mirroring defines the mirroring axis. The current

aperture is mirrored around its (which may not be its

geometric center). Mirroring is performed on the original

aperture as defined in the aperture dictionary, it is not

cumulative.

The syntax for the LM command is:

Mirroring is performed before the rotation.

The LR command sets the graphics state

parameter. This command can be used multiple times in a file.

The current mirroring applies to all subsequent apertures used

until changed by another LR command.

The rotation defines the rotation angle. The current aperture is

rotated around its (which may not be its geometric center).

Rotation is performed on the original aperture as defined in the

aperture dictionary, it is not cumulative.

The syntax for the LR command is:

current mirroring

origin

current rotation

origin

Mirroring is performed before the rotation.

The LS command sets the graphics state

parameter. This command can be used multiple times in a file.

The current scaling applies to all subsequent apertures used

until changed by another LS command.

The scaling defines the scale factor applied apertures. The

current aperture is scaled from its (which may not be its

geometric center); in other words the origin remains in the same

position, whatever the scaling.

The syntax for the LS command is:

Aperture attributes can be associated with block apertures as

with any other apertures: a block aperture takes on the

attributes in the attribute dictionary at the time of the %AD

defining it, as with other attributes.

7.5 Load Scaling (LS)

<LS command> = LS<Scale>*

7.6 Examples

current scaling

origin

8. New Attributes

Syntax Comments

LM LM for Load Mirroring

N|X|Y|XY N - No mirroring

X - Mirroring the X axis; mirror left to right; the

signs of the x coordinates are inverted

Y - Mirroring the Y axis; mirror top to bottom the

signs of the y coordinates are inverted

XY - Mirroring both axes; mirror left to right and

top to bottom; the signs of the x and y coordinates are

inverted

along

along

along

Syntax Comments

LS LS for Load Scaling

<Scale> The scale factor is specified by a decimal,

in degrees.

Syntax Comments

%LPD*%

%LPC*%

%LMX*%

%LMN*%

%LR45.0*%

%LR-90*%

%LS0.8*%

Sets the current polarity to dark

Sets the current polarity to clear

Sets current mirroring to mirroring along the X axis

Sets current mirroring to no mirroring

Sets current rotation to 45 degrees

counterclockwise

Sets current rotation to 90 degrees clockwise

Sets current scaling to 80%

Syntax Comments

LR LR for Load Rotation

<Rotation> The rotation angle is specified by a decimal,

in degrees.

www.hkpca.org

Technical Paper 27

The %SR implicitly defines an unnamed block aperture. This

unnamed block aperture takes on the attributes in the aperture

attribute library at the time of the %SR.

A block aperture will often be used to represent a part or stage

in the overall PCB production such as a single PCB of an array.

It serves the same purpose and follow the values for a block as

.Part attribute for the file as a whole. It takes the same values

and semantics.

A file describing a full fabrication panel typically has the

following structure:

A block describing the single PCB is created with aperture

function Part,Single.

Then a block is describing the customer panel is created. It

contains flashes or a step&repeat of the single PCB blocks,

plus tooling holes, fiducials. Its function is Part,Array.

Finally the fabrication panel is created. It contains flashes or

a step&repeat of the customer panel blocks, a border,

background pattern etc. The whole file takes the .Part value

.FabricationPanel.

8.1 The .AperFunction value Part

Example:

Part aperture function values

%TA.AperFunction,Part,Array*%

�

�

�

Such a structure clearly identifies the parts and avoids data

repetition.

Gerber intentionally does not contain fonts or typographic text

this would introduce a complexity out of proportion to its

benefits. The image of any text can be represented with the

available graphic constructs, especially by contours. However,

loses the information which text string they represent; this is

sometimes a disadvantage.

The .FlashText aperture attribute defines this lost information.

Bar codes are handled as text - one can view a barcode as a

special font. .FlashText assumes is designed for text image

created with a flash, typically with a block aperture.

Syntax and semantic of the attribute value is as follows:

The text must be readible when the aperture is not mirrored or

rotated.

An empty field means that the corresponding meta-data is not

specified.

8.2 The .FlashText aperture attribute

<Text>,(B|C)[,<Optional info>[,<Top,Bot,Lft,Rgt>]]

.

Part,Single Single PCB.

Part,Array A.k.a. customer panel, assembly

panel, shipping panel, biscuit.

Part,FabricationPanel A.k.a. Working panel, production

panel.

Part,Coupon A test coupon.

Part,Other, None of the above. The mandatory

<mandatory info> info string informally indicates the

part.

AperFunction value Usage

.AperFunction Usage

Value

<text> The text string represented by the

aperture image.

(B|C) Indicates if the text is represented by a

B -or by - C.

Optional info Any extra information one wants to add.

Font and characters sizes may be

specified informally here.

Top,Bot,Lft,Rgt The top, bottom, left and right coordinate

of the text box relative to the origin of the

block. The values are decimals in the units

of the MO command.

barcode characters

Journal of the HKPCA / 2016 / Summer / Issue No. 60

Technical Paper28

Examples:

Text: Comp side

B|C: Characters,

Info: Courier size 10

Box: Ymax = +2.5, Ymin = -2.5, Xmin = -100, Xmax = +100

Text: XZ12ADF

B|C: Carcode

Info: Code128

Box: Not specified

%TA.FlashText,Comp side,C,Courier size 10,2.5,-2.5,-100,+100*%

%TA.FlashText,XZ12ADF,B,Code128*%

9. Revisions

Rev 1 Initial version, SN command only. This draft was

developed with the assistance of Thomas Weyn

Rev 2 Simplified SN syntax as suggested by Remco Poelstra

Rev 3 Added AB command

Rev 4 Added .Blockpart attribute as suggested by Filip

Vermeire

Rewrite/reorganize overviews

Clarified order of mirror/rotate as suggested by Remco

Poelstra

Rev 5 Clarified aperture attributes and %SN and %SR

Corrected errors in examples indicated by Helmut

Mendritzki

Added preface

Rev 6 Added text attribute and made clarifications as

suggested by Bruce McKibben. Cleaned text and

formatting.

Rev 7 Corrections after input from Helmut Mendritzki. Add

barcode/character field to AperText after discussion

with Bruce McKibben. BlockPart becomes part of the

.Aperfunction value Part rather than a new attribute

see 8.1.

Rev 8 Added words on proper use of the block aperture

triggered by comments from Paul Wells-Edwards - see

4.1.

Specified the effect of flashing a block aperture under

clear polarity - see 4.2

Replace name .AperText by the more specific

.FlashText to avoid future name clashes and clarified

the convention for "unspecified" in .FlashText - see 8.2

Rev 9 Added EBNF syntax of mixing and nesting of AB, SN

and SR. Copy-edits.

Rev 10 Handling of mirror/rotate/scale was complete

overhauled based on a suggestion by Masao Miyashita.

Blocks are now defined directly as apertures rather

than as templates with mirror/rotate/scale parameters.

The new commands LM, LR and LS hander

mirror/rotate/scale for all apertures. This is more

powerful, more consistent with the LP command and

more according to the Gerber style. The .FlashText

attribute was adapted accordingly.

Specify the effect of flashing a block aperture on the

graphics state; this was triggered by Mark Sims. Add

image of AB example.

www.hkpca.org

Technical Paper 29

Rev 11 Retract the new SN statement - the set of

AB/LM/LR/LS commands is now so general and

powerful that SN is not needed anymore. Add stepped

flash D04 - some application benefit from 'knowing'

that flashes are one a grid; D04 applies to all apertures

rather than SN blocks only; it can for example also be

applied to define component footprints.

Copyright Ucamco NV, Gent, Belgium

All rights reserved. No part of this document or its content may

be re-distributed, reproduced or published, modified or not, in

any form or in any way, electronically, mechanically, by print or

any other means without prior written permission from Ucamco.

The information contained herein is subject to change without

prior notice. Revisions may be issued from time to time. This

document supersedes all previous versions. Users of the

Gerber Format , especially software developers, must consult

www.ucamco.com to determine whether any changes have

been made.

Ucamco developed the Gerber Format . The Gerber Format ,

this document and all intellectual property contained in it are

solely owned by Ucamco. Gerber Format is a Ucamco

registered trade mark. By publishing this document Ucamco

does not grant a license to the intellectual property contained in

it. Ucamco encourages users to apply for a license to develop

Gerber Format based software.

By using this document, developing software interfaces based

on this format or using the name Gerber Format , users agree

not to (i) rename the Gerber Format ; (ii) associate the Gerber

Format with data that does not conform to the Gerber file

format specification; (iii) develop derivative versions,

modifications or extensions without prior written approval by

Ucamco; (iv) make alternative interpretations of the data; (v)

communicate that the Gerber Format is not owned by

©

®

® ®

®

®

®

®

®

®

10. Copyright

Ucamco or owned by anyone other than Ucamco. Developers

of software interfaces based on this format specification

commit to make all reasonable efforts to comply with the latest

specification.

The material, information and instructions are provided AS IS

without warranty of any kind. There are no warranties granted

or extended by this document. Ucamco does not warrant,

guarantee or make any representations regarding the use, or

the results of the use of the information contained herein.

Ucamco shall not be liable for any direct, indirect, consequential

or incidental damages arising out of the use or inability to use

the information contained herein. No representation or other

affirmation of fact contained in this publication shall be deemed

to be a warranty or give rise to any liability of Ucamco. All

product names cited are trademarks or registered trademarks

of their respective owners.

